Битурбо двигатель – Что такое BiTurbo и TwinTurbo. Устройство и принцип работы. — DRIVE2

Что значит битурбированный двигатель 🚩 атмосферный двигатель википедия 🚩 Запчасти и аксессуары

Двигатели внутреннего сгорания и дизельные силовые агрегаты приводятся в движение энергией, выделяющейся при сжигании топливо-воздушной смеси. Если накачка горючего может осуществляться исключительно топливным насосом, то методов забора воздуха существует несколько. Атмосферные двигатели, отличающиеся простотой устройства, получают воздух из окружающей среды под действием естественного разрежения, которое образуется в карбюраторе. Однако они имеют существенный недостаток, выраженный в невысокой мощности, который полностью устранен в турбированных и битурбированных двигателях.
Принцип принудительного нагнетания воздуха в камеру сгорания дизельного двигателя был известен еще в конце XIX века, однако патент на турбокомпрессор Альфред Бюхи получил только в 1911 году. Изобретение турбонангнетателя стало одним из результатов исследования методов повышения мощности дизельного двигателя, из которых наиболее многообещающим считался принцип принудительной закачки камеры сгорания предварительно сжатым воздухом. Избыток воздуха в камере сгорания позволил сжигать до 99% топливной смеси, что обеспечило турбированному двигателю повышенную мощность без ощутимых компромиссов в экономичности.
Принцип работы турбокомпрессора основан на использовании энергии отработанных газов. Газ из выпускного коллектора под большим давлением проходит через турбину, раскручивая ее. Вал турбины имеет непосредственное соединением с ротором центробежного компрессора, подготавливающего воздух для впускного коллектора. Производительность турбонагнетателя напрямую зависит от текущей мощности двигателя.
В современном автомобилестроении все большее внимание уделяется динамическим характеристикам транспортных средств. Иногда даже преимущества турбированных двигателей перед атмосферными оказываются не столь ярко выраженными. Дело в том, что потребность в присутствии кислорода в камере сгорания не имеет линейной зависимости от роста крутящего момента. Попросту говоря, существует определенный порог мощности, за пределами которого производительности турбокомпрессора недостаточно для полного раскрытия потенциала дизельного мотора.

Такой недостаток был полностью устранен с появлением двигателя, имеющего двойной турбонагнетатель. Когда двигатель выходит за порог производительности компрессора, производится включение в работу второго турбонагнетателя. Он имеет более высокую производительность, которая, в свою очередь, слишком высока для работы силового агрегата на малых оборотах. Конструкция битурбированного двигателя позволяет реализовать увеличение мощности за счет сжигания большего количества горючего вместо расширения объема рабочей зоны цилиндра.

www.kakprosto.ru

Отличие твин-турбо от би-турбо! — DRIVE2

Твин-турбо и БиТурбо-это лишь разные коммерческие названия системы наддува, состоящей из 2-х турбин.

Название не отображает схему работы турбин (параллельное или последовательное(секвентальное)

Например, Мицубиши 3000 VR-4 имеет название TwinTurbo, там V6 и две турбины, каждая из которых питается от своих 3 цилиндров и дует в общий коллектор. Аналогично на Ауди S4 2.7, но там уже в названии BiTurbo. Аналогично на Мазере Джибли или Кватропорте.

На Тойоте Супра TwinTurbo рядная шестерка, и турбины там работают в хитром порядке, включаясь и выключаясь с помощью специальных перепускных клапанов (последовательно-параллельная схема)
На Субару В4-там две турбины, но работают они секвентально: на низких оборотах работает одна-маленькая-турбина, на высоких к ней подключается вторая-большая.

Би-турбо (biturbo) — система турбонаддува, состоящая из двух последовательно включаемых в работу турбин. В такой системе применяют 2 турбины, одну маленького размера другую большого, сделано это потому, что маленькая турбина раскручивается значительно быстрее, и вступает в работу первой, затем, при достижении более высоких оборотов мотора, раскручивается вторая, большая турбина, и добавляет значительно больший воздушный заряд. Таким образом прежде всего минимизируется лаг, образуется достаточно ровная разгонная характеристика автомобиля без рывка, свойственного большим турбинам, и достигается возможность использовать большие турбины на двигателях устанавлеваемых в автомобилях предназначенных не только для езды по гоночным трассам, но и по городским дорогам, где возможность крутить мотор постоянно есть не всегда, а получить больше мощности с мотора небольшого объема имеет смысл, по каким либо причинам, например связанным с законодательством по налогам данной страны на литраж мотора. Системы би-турбо весьма дороги, и по этому их установка, как правило в серийном производстве, производится на автомобили высокого класса, типа MASERATI или ASTON MARTIN (там компрессоры).

Такая система может быть установлена как на двигатель V6, каждая турбина будет висеть на своей головке по выхлопу, впуск общий, так и на рядном моторе например рядная 4-ка, в этом случае турбины можно включить по выхлопу как парралельно, 2 цилиндра на одну, 2 на другую, так и последовательно — сначала большая турбина, потом маленькая. Встречаются так же варианты, когда к маленькой турбине подходит выхлоп только с 2-х цилиндров, а к большой соответственно с 2-х оставшихся, и с выхода малой турбины.

Твин-турбо (twinturbo) — в данной системе в отличии от системы би-турбо, основной задачей является не снизить лаг, а добиться большей производительности по прокачиваемому воздуху либо большего давления наддува. Производительность по прокачиваемому воздуху необходима, в случаях когда мотор работая на высоких оборотах, потребляет воздух больше, чем турбина способна обеспечить, таким образом возможно падение давления наддува. В системах Twinturbo применяются две одинаковые турбины.

Соответственно производительность такой системы в 2 раза больше чем системы состоящей из одной турбины, при этом если применить 2 небольших турбины которые по производительности будут равны одной большой, то можно достигнуть эффекта снижения лага, при идентичной производительности. Существуют так же ситуации, когда производительности имеющихся в наличии больших турбин, оказывается недостаточно, например при построении мотора дрэгстера, тогда так же используется комбинация из 2-х турбин. Данная схема как и вариант biturbo может работать как на двигателях с V образным развалом головок, так и на рядных двигателях. Варианты включения турбин такие же как и в битурбо.

Существуют так же системы состоящие из 3-х и более одинаковых турбин, результат преследуется тот же что и в twinturbo. Такие системы в гражданском применении как правило не имеют распостранения, и применяются как правило, для построения мощных спортивных моторова, для автомобилей участвующих в драгрэйсинге.

В современных турбированных двигателях (в частности RRS V8 дизель) турбины имеют изменяемую геометрию крыльчаток. Это минимизирует проблему турбоямы и даёт высокий потенциал турбонадувва уже на самых низких оборотах коленвала двигателя. Кроме того это добавляет экономию топлива.

Понравилось подписывайся vk.com/diagnostika_89990781376

www.drive2.com

TwinPower Turbo на моторах BMW, чем они отличаются и в чем их преимущества

Магия TwinPower Turbo в двигателях BMW

В пути от базовой серии до спортивного суперкара M5 бренд BMW всегда бросал вызов законам автомобильной логики. Автомобили, которые казались невероятно быстрыми на бумаге, превосходили все ожидания при запуске в серию и при реальном знакомстве. Многие, если не все двигатели BMW работают, словно по волшебству, но когда открывается капот очередного баварского шедевра, под ним не оказывается древних германских рун, только на защите силового агрегата красуется надпись «TwinPower Turbo».

 

BWM всегда проповедовал политику турбонаддува и заднего привода. Сегодня не встретить силового агрегата марки, который не имеет хотя бы одного турбонаддува, не говоря уже о серии высокопроизводительных дизелей с трех- и четырехтурбинными установками.

 

TwinPower играет важную роль, когда речь идет об эффективных и динамичных бензиновых и дизельных двигателях BMW. Но что такое TwinPower Turbo в реальности и что он может предложить автомобильному миру?

 

Когда речь заходит о бензиновых двигателях, TwinPower Turbo, то есть три компонента, которые применяются во всех модификациях, от 3 до 12 цилиндров:

• вальветроник;
• прямой впрыск топлива;
• турбонаддув.

 

Турбодизели оборудуются системой впрыска Common Rail.

 

Valvetronic – электронный переменный клапан. Это технология, разработанная BMW, которая позволяет оптимизировать потребление топлива путем регулирования подъема клапана. Разработчики утверждают, что эта технология сама по себе способна уменьшить расход топлива на 10%.

 

Вольветроник – мощная электронная технология. Она обеспечивает непрерывный и точный контроль над подъемом впускного клапана. Это означает, что когда владелец баварца нажимаете педаль газа, запускается контроль открытия клапанов, вместо обычной дроссельной заслонки открываются системы впуска.

 

В системе используется набор рокеров, управляемый электронным распределительным валом. Поскольку она способна регулировать клапаны от полностью открытого до почти закрытого состояния, двигатель не нуждается в оборотах для увеличения нагрузки.

 

Valvetronic был впервые представлен в 2001 году на модели серии 316ti и использовался в основном для двигателей с наддувом, ориентированных на массовую продажу, таких как:


• N42 straight-4;
• N52 straight-6.

 

Но система не использовалась на двойном турбонаддуве N54. Вместо этого турбонаддув N55 straight-6, заменивший его в 2009 году с такими же характеристиками, как и у N74 twin-turbo V12 топовой 7-й серии, был оснащен системой вальветроник. После этого технология применялась практически на всех автомобилях BMW.

 

High Precision Injection – системы непосредственного впрыска с центральными многозубчатыми инжекторами. Они постепенно заменили технологии, использовавшиеся 2000-х годах. Двигатели с наддувом и с турбонаддувом использовали пьезоинжекторные форсунки. Однако новый 6-цилиндровый турбодвигатель BMW N55, запущенный в производство с 2010 года, устанавливавшийся в моделях 335i, 535i, X3, X5 и X5, использует систему впрыска соленоида, разработанную Bosch. Эта система была выбрана баварцами, чтобы сохранить конкурентоспособные цены на североамериканском автомобильном рынке.

 

Название TwinPower Turbo сбило с толку многих автовладельцев. Они не понимали, что находится под капотами их BMW. В связи с этим на компанию был подан судебный иск за обман большого количества людей. В документе TwinPower Turbo был назван «ложным двойником» и говорилось, что баварцы запустили рекламную кампанию с целью обмануть покупателей. Все дело в слове «двойной», которое присутствует в названии. Его наличие не было гарантией оснащения двигателей двумя турбонаддувами.

 

Первоначально TwinPower Turbo появился на двухпролетном одиночном турбонаддуве (устанавливался на 5 серию Gran Turismo в 2009 году, а в 2010 году появились модели E90 335i, 135i, X3 и X5), начиная с N55 (шестицилиндровым двигателем с турбонаддувом) и N74 (6-литровый V12 агрегат с двумя турбонаддувами). Им оснащались модели 760i и 750Li 2009 года выпуска. Двухскоростной турбонаддув – основная технология для TwinPower Turbo BMW.

 

Конструкция с двумя турбинами начинается с выпускного коллектора, разделяющего выхлопные газы. Они проводятся через разные спирали, называемые «свитками». Турбо имеет два сопла разных диаметров, они нужны для обеспечения быстрого отклика силового агрегата. BMW называет специальный выпускной коллектор собственной разработки Cylinder-Bank Comprehensive Manifold или CCM.

 

Следует напомнить, что современные двигатели BMW TwinPower не обязательно оснащаются двухтактными турбокомпрессорами. Зато у них есть отличный выпускной коллектор, который улавливает больше выхлопных газов для подачи в турбины, что обеспечивает мощность без запаздывания.

 

Трехцилиндровая революция: B37 и B38 TwinPower Turbo. Бензин и дизель

Очередным революционным решением BMW стали трехцилиндровые бензиновые и дизельные двигатели, которые могут соперничать с модификациями, имеющими большее количество цилиндров. Они построены по модульной системе, где используются такие же 500-сантиметровые цилиндры совместно с технологией TwinPower Turbo мощностью 120–220 лошадиных сил.


Известно, что дизельные агрегаты получили обозначение B37, а бензиновые — B38. Первые образцы установлены на гибридном спортивном автомобиле i8 серии FWD 1 и MINI. Они также используются сериями RWD 1 и 3 в качестве стартовых модификаций модельного ряда двигателей.

 

Лучшие 4-цилиндровые турбо в мире

В 2004 году началось производство двигателя с прямым впрыском, разработанного совместно с PSA Peugeot Citroen. В 2011 году конструкторы BMW разработали модель N13, в которой был изменен корпус масляного фильтра — он устанавливался продольно. Двигатель был установлен на модели 114i, 116i и 118i.

 

Возможно, перспективным мотором для BMW сейчас является N20. Его рабочий объем — 2.0 литра, есть турбонаддув с четырьмя цилиндрами. Мотор также имеет надпись «TwinPower Turbo» на крышке. Этот двигатель заменил менее мощного собрата стрит-6 в моделях «20i», «28i», является жизнеспособной и очень эффективной его альтернативой.

 

Существует 2 модификации N20. Версия 184 PS является менее мощной и доступна для X1, xDrive20i, F30 320i, 520i, базового Z4 sDrive20i. Топовый вариант этого 2,0-литрового двигателя TwinPower обладает мощностью 245 л.с., используется в моделях F30 328i, 528i, X1, X3 и Z4.

 

Straight-6 TwinPower Turbo: N55

Когда технология TwinPower Turbo устанавливается на 6-цилиндровый двигатель, его преимущества становятся очевидными. Мотор с двумя турбинами N55 заменил более дорогой агрегат N54 в 2009 году. Но обе модификации очень похожи друг на друга. Сопоставимый выход на собственный 4-литровый V8 BMW, с более легким блоком и более низким крутящим моментом, еще больше загар, который можно найти в E92 M3 с мощным S65 V8.

 

Мощность N55 составляет 302 л.с., крутящий момент — 300 Нм (400 Нм). Он устанавливается в моделях 335i, 135i и всех модификациях SUV. Существует еще более мощная версия под индексом N55HP, мощностью 315 л.с., крутящим моментом 450 Нм. Этой версией комплектуются топовые модели, такие как 640i, 740i, и даже спортивный сверхтяжелый хэтчбек M140i.

Дебют двигателя состоялся в 2009 году, его начали устанавливать на пятую серию GT. Оборудованный продвинутой версией 6-цилиндрового двигателя, BMW 535i Gran Turismo способен разгоняться до 100 км/ч всего за 6,3 секунды. Максимальная скорость этого зверя ограничена 250 км/ч. Что касается расхода топлива, то BMW 535i GT потребляет 8,9 литра на 100 километров. Показатель выброса CO2 – 209 г/км.

 

Автор: Сергей Василенков

www.1gai.ru

Twinturbo или Biturbo? Ликбез. Часть 1. — Лада 2108, 1.6 л., 1985 года на DRIVE2

Хотя публикаций, посвящённых данной теме, существует немало, мне ни одна из них не показалась достаточно полной, тогда как некоторые из них содержат очевидные заблуждения и только больше путают читателя. В этом материале попытаемся разобраться в различиях схем наддува с двумя турбокомпрессорами и ответить на самый простой и, как показывает практика, самый сложный вопрос: «В чём разница между Twinturbo и Biturbo?»

Давайте начнём именно с последнего вопроса, чтобы об этом узнали все читатели, а не только те, у кого хватило терпения дочитать до конца.
Итак, в чём разница между Twinturbo и Biturbo? — А разницы как раз нет! Точнее она есть, но ровно такая же, как между европейским Football и американским Soccer — в названии. Именно эта простая истина вызывает у некоторых «знатоков» волну негодования и становится началом очередного холивара. А между тем оба названия, что Twinturbo, что Biturbo — это общее название любой системы наддува с двумя турбокомпрессорами, вне зависимости от того, по какой схеме эти турбокомпрессоры работают. Просто разные автопроизводители склонны применять либо одно, либо другое название — на японских машинах чаще встречается Twinturbo, тогда как на европейских — Biturbo. Запомните этот абзац, мы к нему ещё вернёмся попозже, если кому-то необходимы доказательства вышеописанного. Мы же далее рассмотрим различные схемы работы двух турбокомпрессоров, их преимущества и недостатки.

Параллельное подключение (parallel twinturbo/biturbo)

При параллельной схеме работы используются два одинаковых турбокомпрессора, работающих симметрично. На каждый из них подаётся половина выхлопных газов двигателя как правило по индивидуальному выпускному коллектору и от определённых для каждой из турбин цилиндров. На V-образных двигателях каждый турбокомпрессор питается одним из рядов цилиндров. Нагнетаемый воздух поступает зачастую в общий впускной коллектор, откуда распределяется по всем цилиндрам двигателя, но в некоторых случаях каждый из компрессоров может питать только часть цилиндров — «свою» половину или «чужую».
На картинке изображена схема работы двух турбокомпрессоров на двигателе V6 6G72 автомобиля Mitsubishi 3000GT. Два одинаковых турбокомпрессора, каждый работает от своего ряда из трёх цилиндров и нагнетает воздух в общий коллектор.

6G72 Twinturbo Mitsubishi 3000GT

Ниже на фото двигатель Renault Sport EF15 — полуторалитровый мотор V6 для Formula 1 с двумя параллельно работающими турбокомпрессорами и подачей нагнетаемого воздуха в раздельные впускные ресиверы на отдельный ряд цилиндров каждый.

Renault Sport EF15 Twinturbo

Первопроходцем среди производителей серийных автомобилей с двумя турбокомпрессорами оказалась Maserati, выпустившая в 1981 году модель Maserati Biturbo с 2-литровым V6, оснащённым двумя турбокомпрессорами, работающими параллельно. Именно такая схема работы и компоновка до сих пор остаётся наиболее распространённой среди всех двигателей с двумя турбокомпрессорами. В то время в Италии на двигатели свыше 2-х литров объёма накладывались большие налоги и Алехандро де Томасо, купивший Maserati в 1976 году, таким образом нашёл решение, как сделать достаточно мощный двигатель малого объёма для недорогого спортивного автомобиля. Первая 2-литровая версия мотора выдавала 180 л.с., а более поздние и экспортные модификации объёмом до 2.8 литров — до 280 л.с. Так решения, применяемые на моторах Formula 1, попали на обычные автомобили.

Maserati Biturbo

Основной причиной замены одного большого турбокомпрессора на два небольших является желание уменьшить турбояму (диапазон оборотов, в течении которого турбокомпрессор не создаёт достаточно высокого давления наддува) и турболаг (задержка отклика турбокомпрессора на открытие дросселя). Два небольших высокооборотистых турбокомпрессора обыкновенно быстрее реагируют реагируют на дроссель и раньше выходят на рабочее давление наддува, чем один большой аналогичной производительности — инерционность большой турбинной и компрессорной крыльчаток определяет эту разницу. Однако при параллельной работе турбин преимущество это не так сильно заметно, т.к. каждая из двух турбин раскручивается только половиной выхлопных газов двигателя, в отличии от одной большой турбины. Тем не менее параллельная схема работы турбокомпрессоров получила наиболее широкое распространение по сравнению со всем остальными, и чаще всего она встречается на V-образных двигателях. Причина такого распространения — удачное компоновочное решение для двигателей, где размещение одного турбокомпрессора затруднительно. Взять те же самые V-образные двигатели, у которых конструктивно удобно размещать общий впускной коллектор в развале цилиндров, а выпускные коллектора раздельно, в противоположных сторонах двигателя. Связать при такой компоновке оба выпускных коллектора в условиях ограниченного подкапотного пространства довольно непросто. Вот, например, современный турбомотор Renault для Formula 1 2014 года: 1.6 литровый V6 с одним турбокомпрессором — как думаете, легко такую конструкцию будет вписать под капот обычного автомобиля?

Renault F1 1600 V6 Turbo

Схожая ситуация и на рядных 6-цилиндровых двигателях — большая длина блока и недостаток свободного пространства накладывает ограничения на размер и форму выпускного коллектора для одного турбокомпрессора. Слева, для примера, заводской чугунный выпускной коллектор двигателя Nissan RB25DET с одной турбиной. Комментарии, думаю, излишни. А справа два коллектора с Nissan RB26ETT (Twinturbo). Чугунина, конечно, ограничивает полёт инженерной мысли, но с точки зрения равнодлинности и пропускной способности они явно выигрывают у коллектора слева.

При этом схема работы цилиндров рядной шестёрки (1-5-3-6-2-4) при таких простых и компактных 3-цилиндровых коллекторах обеспечивает каждому из двух турбокомпрессоров равномерную подачу отработавших газов, т.к. временные промежутки между последовательной работой первых трёх цилиндров одинаковы, как и между работой последних трёх (см. последовательность работы цилиндров)

И если на двигателе Nissan RB26ETT стояла задача увеличения мощности при сохранении низов, то на двигателе BMW N54 приоритетом были хорошие низы при достаточной высокой литровой мощности — два небольших турбокомпрессора низкого давления позволяют 3-литровой рядной шестёрке создавать ощущение езды на атмосферном двигателе большего объёма за счёт ровной моментной характеристики без заметной турбоямы и подхватов:

BMW N54

Вопреки общей практике, встречаются V-образные моторы и с двумя турбокомпрессорами в развале цилиндров, а не раздельно по бокам. Например, V-образная восьмёрка BMW S63TU. Здесь инженеры пошли дальше многих и, закрыв глаза на компоновочные сложности, добились максимально эффективной работы имеющихся турбокомпрессоров:

BMW S63TU

Сразу и не понятно, в чём выгода такого размещения, если не приглядеться к выпускному коллектору:

Видите, в отличии от подавляющего большинства других V-образных моторов, здесь каждый из двух твинскрольных турбокомпрессоров питается не одним рядом цилиндров, а отдельными цилиндрами обоих рядов. Давайте разберёмся, зачем это нужно. Для начала представим, что если скачки давления отработавших газов от всех восьми цилиндров наложить на одну временную ось, то получится примерно вот такой график:

Цилиндры, естественно работают не в прямой последовательности (1-2-3-4-…), а по несколько более запутанной схеме для обеспечения равномерности вращения коленвала и снижения вибраций. Обычно для двигателей V8 эта последовательность выглядит как 1-5-4-8-6-3-7-2. Если мы подключим турбокомпрессор только к одному ряду цилиндров (как это реализовано на предыдущей версии S63 и базовой модели двигателя — BMW N63), скачки давления выпускных газов в его коллекторе будут выглядеть вот так:

Отсутствие паузы между при переходе 2-1 и большая пауза при переходе 4-3 явно не способствуют равномерному вращению крыльчатки турбины. Согласно первому графику грамотнее питать один турбокомпрессор от цилиндров 1-4-6-7, а второй от цилиндров 5-8-3-2. Вот что получится для первого турбокомпрессора:

Как видите, равномерные промежутки между скачками давления выпускных газов. Не забываем, что на BMW S63TU стоят TwinScroll турбины (у которых улитка турбины на две разные по геометрии части, оптимизированные для разных режимов работы, для чего им требуется раздельное питание отработавшими газами), а значит два цилиндра будут питать одну из частей горячей улитки, а другие два цилиндра — вторую часть. Смотрим на коллектор BMW S63TU и видим, что и про это не забыли:

www.drive2.ru

Twinturbo или Biturbo? Ликбез. Часть 2. — Лада 2108, 1.6 л., 1985 года на DRIVE2

Итак, дорогие читатели, продолжим наш рассказ о системах наддува с двумя турбокомпрессорами. Кто не читал первую часть, советую ознакомиться, чтобы сохранить целостный образ повествования: Twinturbo или Biturbo? Ликбез. Часть 1. Там мы уже выяснили, что между понятием «Twinturbo» и «Biturbo» нет никакой разницы, подробно рассмотрели классическую параллельную работу турбокомпрессоров и разновидности этой схемы с поэтапным задействованием турбин. А теперь очередь за наименее известными широкой публике и наиболее запутанными схемами с последовательным подключением турбокомпрессоров.

Само название «последовательная» или «serial», предполагает, что какие либо части турбокомпрессоров, турбинные или компрессорные, подключаются друг за другом. При этом последовательно могут быть подключены только турбины, только компрессоры, или и те, и другие одновременно, до кучи с возможностью отключения или переключения в параллельную работу на разных этапах. Сами турбокомпрессоры при этом могут быть одинаковыми или, что чаще, совершенно разными по размерам и производительности. Представляете себе, какое разнообразие итоговых вариаций возможно в рамках этого семейства? Однако, несмотря на такую свободу полёта инженерной мысли, распространение получили только несколько схем, наиболее эффективных и востребованных по своим характеристикам. Но, прежде чем продолжить, отмечу несколько основных моментов, имеющих место быть при последовательном соединении турбин и компрессоров, чтобы потом не возвращаться к этому:
1) при последовательном расположении турбин эффективность первой турбины несколько снижается, т.к. сопротивление отработавшим газам, создаваемое следующей за ней турбиной, влияет на перепад давлений на входе и выходе первой турбины, что напрямую отражается на интенсивности её разгона;
2) отработавшие газы, прошедшие через одну турбину, теряют значительную часть энергии, а значит даже точно такую же по размерам вторую турбину уже не будут раскручивать столь же эффективно, как и первую – однако степень использования энергии отработавших газов будет выше, чем на одной турбине и в целом КПД системы должно повышаться;
3) необходимо понимать, что компрессор не создаёт прибавку давления, он повышает давление на входе компрессора в K раз, где K – степень повышения давления (отношение абсолютного давления на выходе компрессора к давлению на его входе – Pвых./Pвх.), указанная по оси «Y» на турбокарте. Таким образом, если для заданного режима K=1.7, а на входе компрессора атмосферное давление, значит на выходе будет 1.7 бар абсолютного давления или 0,7 бар избытка. Если на входе компрессора уже 1.7 бара (например, перед ним стоял другой компрессор, предварительно поднявший давление воздуха до указанного), то при K=1.7 абсолютное давление на выходе достигнет 2,89 бар или 1,89 бар избыточного давления. Таким нехитрым способом можно создавать высокие давления наддува при помощи турбин, которые сами по себе в отдельности такого избыточного давления развить просто не способны. Фактически, последовательно работающие компрессоры помогают друг другу, до кучи выполняя роль мультипликаторов давления наддува.

Начнём с самой простой и, наверное, самой первой последовательной схемы подключения. Наиболее широкое применение она нашла на дизельных двигателях, при том далеко не с легковых автомобилей.

Последовательное подключение (serial twinturbo/biturbo).

Обычно используются два турбокомпрессора разных размеров, один большой и один маленький/средний (хотя можно и одинаковые, но это не так эффективно). Турбины и компрессоры соединяются последовательно, при том, как видно на схеме, из турбин первой идёт маленькая, а за ней большая, тогда как у компрессоров порядок обратный. Как это работает?

1) Низкие обороты. Поток отработавших газов сперва проходит через маленькую турбину, эффективно разгоняя её на низких оборотах двигателя. Затем поступает в большую турбину, сообщая ей на низких оборотах некоторый предварительный разгон. Большой компрессор ввиду невысоких рабочих оборотов начинает неторопливо прогонять через себя воздух, в какой-то момент даже создавая небольшое избыточное давление. Этот воздух подаётся на вход маленького компрессора, который имеет уже заметно более высокие обороты, чем на большом компрессоре, за счёт чего обеспечивается определённое избыточное давление во впускной системе. При том, чем выше давление на входе второго (маленького) компрессора, тем выше оно и на выходе. Таким образом, даже еле работающий большой компрессор, создавая небольшой избыток на входе маленького компрессора, помогает быстрее достичь рабочего давления наддува и, тем самым, увеличить и развиваемый двигателем крутящий момент, и так необходимый турбинам объём отработавших газов.
2) Средние обороты. Маленький турбокомпрессор достигает рабочих оборотов, его турбина упирается в предел своей пропускной способности. Следующая за ней большая турбина так же заметно повышает скорость вращения, но потенциал ещё есть. Большой компрессор создаёт уже заметное избыточное давление воздуха, поступающего на вход маленького компрессора, а он, в свою очередь, ещё больше сжимает смесь.
3) Высокие обороты. Т.к. первая, маленькая турбина, достигает потолка своей производительности и пропускной способности, в то время как вторая, большая — ещё имеет запас, а поток отработавших газов продолжает увеличиваться, на первой турбине приоткрывается перепускной клапан, отводящий часть потока напрямую на большую турбину. Он может начать открываться ещё на средних оборотах и постепенно увеличивать проходящий через него поток в широком диапазоне оборотов. Алгоритм работы этого клапана определяется характеристиками турбокомпрессоров, их рабочими диапазонами, а так же требуемыми параметрами наддува. Таким образом, маленькая турбина предохраняется от перекрута, а большая полностью загружается. Важно отметить, что оба турбокомпрессора продолжают полноценно работать, как турбинные, так и компрессорные их части.

За счёт такой схема работы компрессоров возможно создавать очень высокие давления наддува, трудно достижимые при работе одного компрессора, например до 5-6 бар избыточного давления, если есть такая необходимость. А такая необходимость возникает на высокофорсированных дизелях, от гражданских (тракторные, судовые, тепловозные и т.п.) до спортивных дрэговых. Так же эта схема позволяет поршневым авиационным моторам на большой высоте в разряженной атмосфере обеспечивать приемлемое давление наддува. Само собой, маленький турбокомпрессор в этой паре так же прекрасно служит делу снижения турбоямы, при том эффективнее, чем это происходит на параллельной схеме с поэтапно подключаемыми одинаковыми турбокомпрессорами (как на Toyota Supra, Mazda RX-7 или Subaru B4). При равной производительности обоих систем, в последовательной схеме первый работающий компрессор будет меньше по размерам, чем в параллельной, при том ему будет немного помогать и крупный компрессор. Есть ещё один немаловажный нюанс в этой схеме – очень тесная связь работы двух турбокомпрессоров друг с другом накладывает некоторые ограничения на свободу выбора подобных пар, т.к. в погоне за ранним спулом турбины уменьшение размеров одного из турбокомпрессоров неизбежно приведёт к ограничению производительности второго, крупного турбокомпрессора. Как это проявляется в реальных условиях, можно посмотреть на примере дизельных двигателей Mazda Skyactiv-D для серийных и гоночных автомобилей.

Итак, имеем рядный 4-цилиндровый турбодизель Mazda Skyactiv-D рабочим объёмом 2.2 литра.

Mazda Skyactiv-D


Два турбокомпрессора, один средних размеров, другой – маленький. Схема работы ровно такая, как описана выше. Применение последовательной схемы позволило увеличить производительность системы, не только не потеряв низы, но и заметно улучшив их. Посмотрите на график внизу, где новый дизель Skyactiv-D сравнивается по развиваемому крутящему моменту с более ранним дизелем Mazda такого же объёма, но с одним турбокомпрессором. Результат, как говорится, на лицо! На выходе 173 л.с. при 4500 об/мин и 420 Нм при 2000 об/мин:

Mazda Skyactiv-D

Точно так же выглядит и гоночная модификация этого дизеля, только турбокомпрессоры заметно покрупнели, а максимальная мощность выросла примерно до 400 л.с. (с 2.2 литров объёма дизельного двигателя!), в значительной степени за счёт постоянной последовательной работы компрессоров, обеспечивающих очень высокое давление наддува не только ни низких, но и на высоких оборотах.

Mazda Skyactiv-D Race Engine

Неудивительно, что в США такая схема наддува нашла широкое применение на дизельных двигателях для дрэгрейсинга.

Поэтапное последовательное подключение (sequential serial twinturbo/biturbo). Вариант 1.

Но прогресс не стоит на месте и на основе вышеописанной схемы наддува родилась новая, активно распространяющаяся на современных турбодизельных моторах легковых автомобилей. Давайте изучим её на примере одного современного дизеля BMW.

Дизель BMW N57D30T0, рядный, 6 цилиндров, рабочий объём 3.0л.

Турбодизель BMW N57D30T0

На данном двигателе используются два турбокомпрессора, один большой (K26) и один маленький (KP39). Турбины подключены последовательно, маленькая первой, а большая — второй. Компрессоры подключены так же последовательно, но в обратном порядке. Всё, вроде, как на рассмотренной ранее схеме, но на этом сходство и кончается. Самая главная фишка в том, что турбинная и компрессорные части маленького турбокомпрессора на определённых этапах выводятся из работы, что можно посмотреть на схеме ниже.

www.drive2.ru

Матчасть по Компресорам, турбо, твинтурбо, и тд — DRIVE2

Всем доброго дня, приятного аппетита.

По причинам частых вопросов мне в личный ящик, я решил произвести маленький ликбез, поехали


Сегодня будет небольшой пост, в котором я расскажу не про какой либо двигатель, а про комбинированную систему наддува.

Сейчас у каждого производителя есть турбодвигатели. И у каждого из них есть свои плюсы и минусы — плюсы я думаю все знают, поэтому о минусах: это лаг или турбояма. Турбояма — это недостаток давления наддува при низких оборотах двигателя и, соответственно, низком количестве выхлопных газов, раскручивающих крыльчатку турбины. О компенсации такого провала мы сегодня и поговорим.

Помимо турбины (улитки) воздух так же можно нагнетать компрессором (SuperCharger), подсоединенным непосредственно к коленвалу.

Он создает сравнительно небольшое давление в цилиндрах и не способен давать такую отдачу как газотурбинная система. Основной недостаток в том, что из за конструктивных особенностей порог давления невысок и излишки воздуха попадают назад сквозь роторы. Этот эффект можно уменьшить за счет подгонки роторов или за счет громоздких многоуровневых систем. В основном компрессоры используют для увеличения мощности в зоне малых и средних оборотов. В одиночку данная система не очень эффективна и понижает КПД двигателя.

Но если применять компрессор как средство достижения оптимального давления на низких оборотах вкупе с улиткой, то они очень удачно дополняют друг друга. Скажете ненадежно? Вполне надежно) Смотрите:

Пока двигатель работает в зоне оборотов, где турбина не создает нормальное давление, за нее это делает компрессор, подавая сжатый воздух в систему еще до турбины. Но при увеличении оборотов турбина раскручивается и при достижении определенного давления компрессор выключается из системы и воздух идет в обход него сразу к турбине.
Вся система работает по следующей схеме:

здесь все наглядно представлено.

Так же я нашел информацию про наддув, про который не слышал ни разу в жизни, думаю здесь тоже мало кто знает про такую штуку как резонансный наддув.
Постоянное давление в момент впуска не обязательно — достаточно «продавить» прямо перед закрытием клапана.
Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент. Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах, при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха. Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар

Для тех кто плохо понял, что написано видео на примере двигателя Volkswagen:

Отличие biturbo от twinturbo.
Многие заблуждаются, считая эти системы турбирования принципиально разными!
Твин-турбо и БиТурбо-это лишь разные коммерческие названия системы наддува, состоящей из 2-х турбин.
Название не отображает схему работы турбин (параллельное или последовательное(секвентальное)
Например, Мицубиши 3000 VR-4 имеет название TwinTurbo, там V6 и две турбины, каждая из которых питается от своих 3 цилиндров и дует в общий коллектор. Аналогично на Ауди S4 2.7, но там уже в названии BiTurbo.Аналогично на Мазере Джибли или Кватропорте.
На Тойоте Супра TwinTurbo рядная шестерка, и турбины там работают в хитром порядке, включаясь и выключаясь с помощью специальных перепускных клапанов(последовательно-параллельная схема)
На Субару В4-там две турбины, но работают они секвентально: на низких оборотах работает одна-маленькая-турбина, на высоких к ней подключается вторая-большая.
Би-турбо (biturbo) — система турбонаддува, состоящая из двух последовательно включаемых в работу турбин. В такой системе применяют 2 турбины, одну маленького размера другую большого, сделано это потому, что маленькая турбина раскручивается значительно быстрее, и вступает в работу первой, затем, при достижении более высоких оборотов мотора, раскручивается вторая, большая турбина, идобавляет значительно больший воздушный заряд. Таким образом прежде всего минимизируется лаг, образуется достаточно ровная разгонная характеристика автомобиля без рывка, свойственного большим турбинам, и достигается возможность использовать большие турбины на двигателях устанавливаемых в автомобилях предназначенных не только для езды по гоночным трассам, но и по городским дорогам, где возможность крутить мотор постоянно есть не всегда, а получить больше мощности с мотора небольшого объема имеет смысл, по каким либо причинам, например связанным с законодательством по налогам данной страны на литраж мотора. Системы би-турбо весьма дороги, и по этому их установка, как правило в серийном производстве, производится на автомобили высокого класса, типа MASERATI или ASTON MARTIN (там компрессоры).
Такая система может быть установлена как на двигатель V6, каждая турбинабудет висеть на своей головке по выхлопу, впуск общий, так и на рядном моторе например рядная 4-ка, в этом случае турбины можно включить по выхлопу как параллельно, 2 цилиндра на одну, 2 на другую, так и последовательно — сначала большая турбина, потом маленькая. Встречаются так же варианты, когда к маленько турбине подходит выхлоп только с 2-хцилиндров, а к большой соответственно с 2-х оставшихся, и с выхода малой турбины.

Твин-турбо (twinturbo) — в данной системе в отличии от системы би-турбо, основной задачей является не снизить лаг, а добиться большей производительности по прокачиваемому воздуху либо большего давления наддува. Производительность по прокачиваемому воздуху необходима, в случаях когда мотор работая на высоких оборотах, потребляет воздух больше, чем турбина способна обеспечить, таким образом возможно падение давления наддува. В системах Twinturboприменяются две одинаковые турбины. Соответственно производительность такой системы в 2 раза больше чем системы состоящей из одной турбины, при этом если применить 2 небольших турбины которые по производительности будут равны одной большой, то можно достигнуть эффекта снижения лага, при идентичной производительности. Существуют так же ситуации, когда производительности имеющихся в наличии больших турбин, оказывается недостаточно, например при построении моторадрэгстера, тогда так же используется комбинация из 2-х турбин. Данная схема как и вариант biturbo может работать как на двигателях с Vобразным развалом головок, так и на рядных двигателях. Варианты включения турбин такие же как и в битурбо.
Существуют так же системы состоящие из 3-х и более одинаковых турбин, результат преследуется тот же что и в twinturbo. Такие системы в гражданском применении как правило не имеют распространения, и применяются как правило, для построения мощных спортивных моторов а, для автомобилей участвующих вдрагрэйсинге.
В современных турбированных двигателях (в частности RRS V8 дизель) турбины имеют изменяемую геометрию крыльчаток. Это минимизирует проблему турбоямы и даёт высокий потенциал турбонадувва уже на самых низких оборотах коленвала двигателя. Кроме того этодобавляет экономию топлива

Чем же отличаются друг от друга турбина и компрессор? Компрессор – это механический нагнетатель, который приводится в движение, как правило, ремнем (то есть так или иначе нагнетатель соединен с двигателем). Турбину же раскручивают выхлопные газы: они крутят одну крыльчатку, соединенную валом с другой, которая, собственно, и «всасывает» воздух в мотор.

Имейте в виду, что установка любого из двух типов нагнетателей в рамках тюнинг-проекта потребует серьезных изменений в моторе. Придется кардинально дорабатывать впускную систему (а в случае с турбиной – и выпускную), возросшие нагрузки на мотор заставят раскошелиться на более прочную поршневую группу, на иные клапаны и т.д. Отдача будет высокой, но если вы не готовы к серьезным финансовым вложениям, то лучше спасовать.

Механические компрессоры бывают трех основных видов: центробежный, типа Roots и типа Лисхольм (винтовый). Центробежный компрессор гонит воздух через свой корпус подобно турбине, с помощью крутящейся крыльчатки – это наиболее распространенный тип компрессоров в мире тюнинга. Компрессор типа Roots считается «объемным» нагнетателем, в нем два ротора крутятся в разные стороны, сжимая воздух на выходе из агрегата. Последний тип – винтовый – встречается довольно редко (такие агрегаты выпускает, к примеру, специализирующаяся на производстве компрессоров для двигателей Mercedes-Benz компания Kleemann). Функционирует такой компрессор почти как мясорубка, с единственной разницей, что в нем два винта, которые, соприкасаясь, двигаются в унисон. Любой компрессор заметно поднимает мощность двигателя, единственный недостаток – большие энергозатраты, турбина все-таки эффективнее.

Турбины особым разнообразием не отличаются. Они работают по принципу центробежного компрессора, не без нюансов, впрочем. Недостаток турбонаддува – «инертность» агрегата, какое-то время он «не хочет» раскручиваться и развивать требуемое давление (это явление называется турболагом, турбоямой). Борьба с турболагом привела к тому, что автопроизводители и тюнинг-ателье вместо одной большой турбины (серьезно повышающей мощность, но бесконечно долго раскручивающейся) стали применять две – одну небольшую и вторую, более крупную. Одна добавляет живости двигателю на низких оборотах, а вторая обеспечивает бурное ускорение в зоне повышенных оборотов. Кстати сказать, некоторые фирмы в целях борьбы с турболагом начали выпускать нагнетатели с изменяемой геометрией… Турбина всегда снабжена перепускным клапаном, который стравливает избыточное давление (например, при резком закрытии дроссельной заслонки), а также вейстгейтом, который позволяет регулировать давление наддува (тем самым, повышая или снижая мощность; буст-контроллер позволяет делать то же самое, не выходя из машины). Эксплуатация автомобиля с турбиной предполагает соблюдение нескольких простых правил: во-первых, нужно заливать качественное масло, а также следить за его количеством и вовремя его менять, во-вторых – нельзя сразу после остановки глушить двигатель, от 30 секунд до минуты он должен поработать на холостом ходу, иначе подшипники со временем заклинят (если совсем невмоготу, то можно установить турбо-таймер, который по прошествию определенного количества времени сам выключит двигатель, позволяя владельцу авто сразу же отправиться по делам).

На этом все)

кстати, у меня в гараже находится один компресорный автомобиль — альтеза и второй турбированный, это Эвик)

больше моих фото тут:
vk.com/storogilov_foto
либо моя страничка, добавляйтесь в друзья)
vk.com/storogilov_a

инстаграм Storogilov

www.drive2.com

Что значит битурбированный двигатель


Что значит битурбированный двигатель

Автор КакПросто!

Тематика турбрования дизельных двигателей считается одной из наиболее интересных для изучения. Особняком в этом направлении стоит отрасль разработки и применения двигателей с двойными турбонагнетателями.

Двигатели внутреннего сгорания и дизельные силовые агрегаты приводятся в движение энергией, выделяющейся при сжигании топливо-воздушной смеси. Если накачка горючего может осуществляться исключительно топливным насосом, то методов забора воздуха существует несколько. Атмосферные двигатели, отличающиеся простотой устройства, получают воздух из окружающей среды под действием естественного разрежения, которое образуется в карбюраторе. Однако они имеют существенный недостаток, выраженный в невысокой мощности, который полностью устранен в турбированных и битурбированных двигателях.Принцип принудительного нагнетания воздуха в камеру сгорания дизельного двигателя был известен еще в конце XIX века, однако патент на турбокомпрессор Альфред Бюхи получил только в 1911 году. Изобретение турбонангнетателя стало одним из результатов исследования методов повышения мощности дизельного двигателя, из которых наиболее многообещающим считался принцип принудительной закачки камеры сгорания предварительно сжатым воздухом. Избыток воздуха в камере сгорания позволил сжигать до 99% топливной смеси, что обеспечило турбированному двигателю повышенную мощность без ощутимых компромиссов в экономичности.Принцип работы турбокомпрессора основан на использовании энергии отработанных газов. Газ из выпускного коллектора под большим давлением проходит через турбину, раскручивая ее. Вал турбины имеет непосредственное соединением с ротором центробежного компрессора, подготавливающего воздух для впускного коллектора. Производительность турбонагнетателя напрямую зависит от текущей мощности двигателя.В современном автомобилестроении все большее внимание уделяется динамическим характеристикам транспортных средств. Иногда даже преимущества турбированных двигателей перед атмосферными оказываются не столь ярко выраженными. Дело в том, что потребность в присутствии кислорода в камере сгорания не имеет линейной зависимости от роста крутящего момента. Попросту говоря, существует определенный порог мощности, за пределами которого производительности турбокомпрессора недостаточно для полного раскрытия потенциала дизельного мотора.

Такой недостаток был полностью устранен с появлением двигателя, имеющего двойной турбонагнетатель. Когда двигатель выходит за порог производительности компрессора, производится включение в работу второго турбонагнетателя. Он имеет более высокую производительность, которая, в свою очередь, слишком высока для работы силового агрегата на малых оборотах. Конструкция битурбированного двигателя позволяет реализовать увеличение мощности за счет сжигания большего количества горючего вместо расширения объема рабочей зоны цилиндра.

Распечатать

Что значит битурбированный двигатель

www.kakprosto.ru

Чем отличается атмосферный двигатель от турбированного

Начнем с того, что ситуация на современном рынке новых автомобилей заметно поменялась за последние 15-20 лет. Изменения в автоиндустрии коснулись как исполнения, уровня оснащения и решений в плане активной и пассивной безопасности, так и устройства силовых агрегатов. Привычные атмосферные моторы на бензине с тем или иным рабочим объемом, которые раньше фактически являлись показателем класса и престижности авто, сегодня активно вытесняются турбированным двигателем.

В случае с турбомоторами объем двигателя перестал выступать базовой характеристикой, определяющей мощность, крутящий момент, динамику разгона и т.д. В этой статье мы намерены сравнить двигатели с турбиной и атмосферные версии, а также ответить на вопрос, в чем состоит принципиальное отличие атмосферных ДВС от турбированных аналогов. Параллельно будут проанализированы основные преимущества и недостатки моторов с турбонаддувом. Также в итоге будет дана оценка, стоит ли покупать новые и подержанные бензиновые и дизельные машины с турбированным двигателем.

Турбированные двигатели и «атмосферники»: главные отличия

Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе.

Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания. Получается, чем больше рабочий объем двигателя, тем больше воздуха он может уместить в цилиндрах и тем большее количество топлива получится сжечь. В результате мощность атмосферного ДВС и крутящий момент сильно зависят от объема мотора.

Рекомендуем также прочитать отдельную статью о том, что такое рабочий объем двигателя. Из этой статьи вы узнаете, какие параметры определяют данную характеристику, чем измеряется объем мотора и на что влияет данный показатель.

Принципиальной особенностью двигателей с нагнетателем является принудительная подача воздуха в цилиндры под определенным давлением. Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор.

На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:

  • увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров;
  • подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;
С учетом того, что на каждый литр топлива требуется около 1м3 воздуха для эффективного сжигания смеси в ДВС, автопроиз

www.autofluids.ru