Лада х рей стоимость: LADA XRAY Cross от 725 310 руб. – Цены и комплектации – Официальный сайт LADA
комплектации и цены от официального дилера
Колёсная база
2592
Размер колёс
215/50/R17
Ширина задней колеи
1546
Ширина передней колеи
1503
Объем багажника мин/макс, л
361/1207
50
Полная масса, кг
1650
Снаряженная масса, кг
1295
Количество передач
5
Коробка передач
механика
вариаторТип привода
передний
Подвеска и тормоза
Задние тормоза
дисковые
Передние тормоза
дисковые вентилируемые
Тип задней подвески
полунезависимая, пружинная
полунезависимая, торсионная
Тип передней подвески
независимая, пружинная
Эксплуатационные показатели
Максимальная скорость, км/ч
180
162
Марка топлива
АИ-92
Разгон до 100 км/ч, с
10.
912.8
Расход топлива, л город
Расход топлива, л город/смешанный
Расход топлива, л город/трасса/смешанный
9.7/6.3/7.5
Расход топлива, л смешанный
7.3
Диаметр цилиндра и ход поршня, мм
82 × 84
78 × 83. 5
Количество цилиндров
4
Максимальная мощность, л.с./кВт при об/мин
122 / 90 при 6050
113 / 83 при 5500
Максимальный крутящий момент, Н*м при об/мин
170 при 3700
152 при 4000
Объем двигателя, см³
1774
1598
Расположение двигателя
переднее, поперечное
Расположение цилиндров
рядное
Степень сжатия
10. 5
Тип двигателя
Тип наддува
нет
Название рейтинга
Оценка безопасности
Аккумуляторная батарея
Запас хода на электричестве, км
Техническое обслуживание автомобилей LADA в Великом Новгороде
Техническое обслуживание автомобиля является проверкой работоспособности абсолютно всех технических узлов и элементов транспортного средства.
В связи с этим специалисты осуществляют проверку:- разных жидкостей;
- свечей зажигания;
- тормозной системы;
- уровня износа деталей и т. д.;
Если упустить момент и не произвести проверку своевременно, то поломка может возникнуть абсолютно не вовремя. В результате следует как можно раньше определять неисправность, что выполнить ремонт с наименьшими финансовыми потерями.
Об услуге
ТО представляет собой актуальную процедуру как для старых, так и для новых ТС различного типа. Важно отметить также и то, что если автовладелец пропустит обязательное техобслуживание, то гарантия, выданная автомобильным центром, аннулируется. А в этом, согласитесь, мало приятного.
Само по себе техническое обслуживание состоит из замены расходников (фильтры, жидкости и т.д.), а также проверяются основные системы ТС. Дата проведения технического обслуживания, пробег на момент ТО отмечаются в сервисной книжке ТС. Данная книжка показывает, что за авто ухаживали и следили, поэтому его будет проще продать в случае необходимости, показав хорошее состояние машины.
У новых авто проведение ТО у официального дилера взаимосвязано с действием гарантии, поэтому отказ от него снимает с производителя многие гарантийные обязательства.
Стоимость работ
Дать точный и универсальный ответ на это невозможно. Обуславливается это тем, что стоимость тех. обслуживания напрямую зависит от конкретной марки и автомобиля.
Объясняется это тем, что некоторые дилеры «дарят» первое ТО в Великом Новгороде при покупке ТС, у других расходники бесплатно, а оплачивается только работа и т. д. Уточнить конкретную ситуацию можно на сайте дилера или представительства, что достаточно удобно.
ЭКОНОМЬ СВОЕ ВРЕМЯ, ОСТАВЬ ЗАЯВКУ НА СЕРВИС И ОЖИДАЙ ЗВОНКА В ТЕЧЕНИИ 5 МИНУТ.
Модель | ТО-0 | ТО-1 | ТО-2 | ТО-3 | ТО-4 | ТО-5 | ТО-6 | |
КАЛИНА | 8 кл. | 1 900 | 9 000 | 8 500 | 9 000 | 8 500 | 9 000 | 14 500 |
16 кл. * | 7 200 | 8 500 | 7 200 | 8 500 | 7 200 | 13 000 | ||
ГРАНТА | 8 кл. | 1 900 | 9 000 | 8 500 | 9 000 | 8 500 | 9 000 | 14 500 |
16 кл. * | 7 200 | 8 500 | 7 200 | 8 500 | 7 200 | 13 000 | ||
ПРИОРА | 8 кл. | 1 900 | 9 000 | 8 500 | 9 000 | 8 500 | 9 000 | 14 500 |
16 кл. * | 7 200 | 8 500 | 7 200 | 8 500 | 7 200 | 13 000 | ||
ЛАРГУС | 8 кл. 111898 кл. | 1 900 | 11 500 | 10 500 | 11 500 | 10 500 | 11 500 | 22 500 |
16 кл. 21129 | 4 000 | 9 500 | 11 000 | 9 500 | 11 000 | 9 500 | 22 500 | |
8 кл. К7М | 9 000 | 11 000 | 9 000 | 18 000 | 9 000 | 13 500 | ||
16 кл. К4М | 4 000 | 11 000 | 12 500 | 11 000 | 20 500 | 12 500 | 15 500 | |
VESTA | 1,6 (106 л.с.) | 4 000 | 8 500 | 10 500 | 8 500 | 10 500 | 8 500 | 21 500 |
CNG | 14 000 | 16 000 | 14 000 | 16 000 | 14 000 | 24 000 | ||
X-RAY | 1,6 (106 л. с.) | 4 000 | 10 500 | 11 500 | 10 500 | 11 500 | 10 500 | 22 500 |
Н4М | 11 000 | 14 000 | 11 000 | 14 000 | 11 000 | 23 000 | ||
4х4 | 8 500 | 8 000 | 11 500 | 11 000 | 11 000 | 10 500 |
Наши преимущества
Мы всегда стремимся предоставить клиентам наиболее комфортные условия, что выливается в широкий список плюсов:
- гарантия на все работы — 1 год;
- вы можете лично наблюдать за всеми работами;
- при возникновении каких-либо вопросов вы можете уточнить их у наших мастеров;
- можно отдать машину в ремонт без очередей – нужно выбрать дату и сообщить мастерам;
- точные сроки. График работ уточняется заранее, время планируемой готовности специалисты сообщают сразу при сдаче ТС;
- высокий контроль качества на каждом этапе;
- удобное расположение и охраняемый паркинг для автомобилей с серьезными поломками или ожидающих комплектующие.
Политика конфиденциальности
Замена жидкости гидроусилителя руля Peugeot 4008. Подчиню и поеду!
Почему стучит рулевая рейка?
Усилитель руля. Правдами и неправдами. 10. (УКР)
Замена салонного фильтра на пежо 307, 308
Peugeot 508 GT — всё было против, но я сделаль! — обзор и тест-драйв автомобиля. 2017 год.
Замена охлаждающей жидкости … C4
Как снять зеркало пежо 308
Как прокачать контур сцепления на Peugeot 308 1.6 HDI
Как узнать реальный пробег автомобиля
Что такое электроусилитель руля (полезные советы от РДМ-Импорт)
Восстановление рулевой рейки Пежо 206 двигателем 2.0 hdi 8v
Комментарии к теме Замена жидкости гидроусилителя руля Peugeot 4008
Карик Рей
а куда помпа делась ее еще никто не отменял
Темка
. .. у меня даже машину не видет дигностика.
Бульба
… кто только придумал это гавно называть ЕВРОПАНЕЛЬЮ?!она что из европы?подожги эти дрова тазодрот!!!
Kinnard
So does electric power steering have any type of hydraulic fluid in it’s cylinder? And is it require to change the electric power steering hydraulic cylinder?
Бая
У вас есть замена радиатора на сценик 1?
Хетаг
отличное видео,класс
Бересеневич Сандро
Блин всё элементарно просто… ЭВРИКА!!! Олег!!! Огромное спасибо!!!
Шерзод Подлас
как прокачать тормоза на рено логан?
Севара
А если новых бочков нету пассат 95 года где я найду новый бачок я просто меняю масло а бочка нет???
Ольгина
Респект хозяину что обслуживает авто ну и конечно тем людям которые его на высшем уровне обслуживают, ето редкось в наше время.
Вахоркина Лейла
I’ve got a question Scotty would this solution work for a lil bit once I’ve gotten the oil gasket seal replaced by in a few weeks. Plus I have white smoke coming underneath the hood of my mustang I’m no mechanic or anything just curious is it the oil getting out or the coolant. N a friend said I might have blown a head gasket if so then why isn’t the car stop running? Get back to me please sir
Ruark
Пожалуйста скажите после замены втулки рулевой рейки нужно ли сход развал и.т.п. манипуляции делать. Спасибо огромное! реально на сервисе экономить получается.
Маргулан
Здравствуйт у меня есть хонда адисей Японски 1997 иво коропка пинайт шатает как можно чинить вапше что можно сделать скажите пожалуйста
Вилл Цховребов
подскажи,у меня подтекает насос гур,я по совету типа механиков долил туда жидкий герметик чтобы не текло,течь перестало,но вот вопрос,как это для системы???спасибо.
Купер Чивский
и попробуй догадайся
Камаз
все понятно. спасибо!
Донат Юречко
Than you so much Scotty! you just saved me a ton of really cold winter work on my 1990 Celica Gts. Best mechanic ever!
Ната
I just subscribed..you are wonderful!!! You need to trademark, just like that. I love it when you say that. Thanks for such a great channel. I’m a female with a mustang and I want to know everything about my car and how to fix it. Can you do more videos on mustang.:)
Афанасий
Рэмчику котосы по путячей, хамик зрыдает!
Эллада
А если ГУР и стук есть на кочках, а ничего не уходит ни жидкость и пыльники норм?
Kimi
Сколько жидкости потребовалось для замены?У меня церато 2,заказал 1 литр как по мануалы,вот и думаю в реале сколько надо
Балтай
краска на порогах повздувалась, не?
Исо
А где у вас футболка
Javier
Динис а возможно ли поменять шпонку коленвала без снятия ремня ГРМ? И надо ли потом прокрутить вал два раза как при замене ремня ГРМ? А стоимость замены ремня 4 р.
Алакаев Керн
Молодца, пацаны
Гарушянц Беляк
Свистит конечно ремень. Но! Ставте нормальную защиту или колхозте что нибудь, за 6 лет поменял 4 насоса! Думал насосы говно, а вот и нет! Летят от грязи!
Оставить комментарий
металлические двери от производителя по выгодной цене в Москве и России
А
Абакан
Азов
Алексин
Анапа
Ангарск
Апатиты
Арзамас
Армавир
Артемовский
Архангельск
Асбест
Астрахань
Аксай
Артем
Азнакаево
Александров
Александровское
Адлер
Альметьевск
Анжеро-Судженск
Абинск
Алушта
Аргаяш
Аркадак (Саратовская область)
Аткарск (Саратовская область)
Б
Балаково
Балашов
Барнаул
Бежецк
Белгород
Березники
Биробиджан
Благовещенск
Брянск
Батайск
Белорецк
Бузулук
Боровичи
Братск
Буденновск
Богородск
Балашиха
Бийск
Бородино
Белореченск
Белово
Белая Калитва
Белозерск
Бугульма
Богородицк
Бор
Бугуруслан
Безенчук
В
Великий Новгород
Владивосток
Владикавказ
Владимир
Волгоград
Волгодонск
Волжский
Вологда
Волоколамск
Воронеж
Вышний Волочёк
Вольск
Выборг
Великие Луки
ВНИИССОК
Видное
Всеволожск
Выкса
Водный
Вырица
Волхов
Вельск
Великий Устюг
Воскресенское
Валдай
Владимирская область
Верхняя Салда
Г
Геленджик
Горно-Алтайск
Глазов
Георгиевск
Гатчина
Городец
Гуково
Д
Дзержинск
Димитровград
Дмитров
Данков
Десногорск
Домодедово
Дегтярск
Донецк (Ростовская область)
Е
Егорьевск
Екатеринбург
Ефремов
Ейск
Евпатория
Елец
Ершов (Саратовская область)
Егорлыкская
Ж
Железногорск (Курская область)
Железногорск (Красноярский край)
Железногорск-Илимский
З
Заринск
Златоуст
Зеленоград
Заречный (Пензенская область)
Зеленогорск
Зеленодольск
Заречный (Свердловская Область)
Зерноград
И
Иваново
Ижевск
Иркутск
Ишим
Ишимбай
Истра
Ивантеевка
Ивангород
Иглино
К
Казань
Калининград
Калуга
Каменка
Каменск-Уральский
Камышин
Кемерово
Кириши
Киров
Кировград
Комсомольск-на-Амуре
Королев
Кострома
Красногорск
Краснодар
Красноярск
Кропоткин
Кузнецк
Курган
Курск
Крым
Каменск-Шахтинский
Канск
Копейск
Кинель
Клявлино
Кирово-Чепецк
Керчь
Котлас
Краснодарский край
Кингисепп
Красноуфимск
Кумертау
Коломна
Кулунда
Кстово
Колпино
Камень-на-Оби
Ковров
Кудымкар
Красновишерск
Кулебаки
Краснокаменск
Красавино
Кулой
Курчатов
Кондопога
Кольчугино
Калининск (Саратовская область)
Красноармейск (Саратовская область)
Красный Кут (Саратовская область)
Кыштым
Конаково
Кузоватово
Клинцы
Киреевск
Коркино
Л
Ленинградская область
Липецк
Лобня
Лысьва
Люберцы
Ленинградская
Ливны
Левашово
Людиново
Лакинск
Ленинск-Кузнецкий
М
Москва
Магнитогорск
Махачкала
Миасс
Мурманск
Мытищи
Муром
Магадан
Мирный (Арханг. обл.)
Медвежьегорск
Майкоп
Мценск
Михайловское
Маркс (Саратовская область)
Миллерово
Н
Набережные Челны
Надым
Находка
Невинномысск
Нефтекамск
Нефтеюганск
Нижневартовск
Нижний Новгород
Нижний Тагил
Новокузнецк
Новомосковск
Новороссийск
Новосибирск
Новый Уренгой
Ногинск
Новомичуринск
Новочеркасск
Новодвинск
Нерехта
Новокуйбышевск
Новошахтинск
Новоспасское
Нытва
Новотроицк
Нарьян-Мар
Новая Игирма
Новочебоксарск
Норильск
Новоузенск (Саратовская область)
Новозыбков
Нальчик
О
Октябрьский
Обнинск
Омск
Орел
Оренбург
Отрадный
Осинники (Кемеровская область)
Озерск
Орск
Октябрьск (Самарская область)
П
Пенза
Пермь
Петрозаводск
Петропавловск-Камчатский
Подольск
Псков
Пугачев (Саратовская область)
Пятигорск
Петровск (Саратовская область)
Плесецк
Прокопьевск
Первоуральск
Пушкино
Приозерск
Пикалево
Пласт
Поспелиха
Переславль-Залесский
Павловск
Р
Радужный
Реутов
Ржев
Ростов-на-Дону
Рыбинск
Рязань
Рузаевка
Ростов
Раменское
Ревда
Рощино
Ртищево (Саратовская область)
С
Саратов
Салават
Самара
Санкт-Петербург
Саранск
Саяногорск
Северодвинск
Семикаракорск
Смоленск
Снежинск
Соликамск
Солнечногорск
Сочи
Ставрополь
Старый Оскол
Стерлитамак
Сургут
Сызрань
Сыктывкар
Севастополь
Симферополь
Сосновоборск
Саров
Ставропольский Край
Северск
Серпухов
Сергиев Посад
Сосногорск
Сердобск
Светогорск
Сясьстрой
Сосновый Бор
Сокол
Саки
Скопин
Сергач
Семенов
Сальск
Т
Таганрог
Тамбов
Тверь
Тобольск
Тольятти
Томск
Тула
Тюмень
Тимашевск
Тихвин
Темрюк
Тутаев
Тулун
Трехгорный
Тайга
У
Улан-Удэ
Ульяновск
Уфа
Углич
Ухта
Урюпинск
Усть-Катав
Усть-Лабинск
Усть-Илимск
Урай
Уссурийск
Узловая
Учалы
Усть-Кут
Ф
Фрязино
Феодосия
Филипповское
Х
Хабаровск
Ханты-Мансийск
Химки
Холмск
Хвалынск (Саратовская область)
Ч
Чебоксары
Челябинск
Череповец
Чистополь
Чита
Черкесск
Чусовой
Чебаркуль
Чапаевск
Ш
Шатура
Шахты
Шуя
Шексна
Шарья
Шиханы (Саратовская область)
Щ
Щёлково
Щербинка
Э
Электросталь
Элиста
Энгельс
Ю
Южно-Сахалинск
Юрга
Южноуральск
Юрюзань
Юрьев-Польский
Югорск
Я
Якутск
Ярославль
Ясногорск
Яровое
Ялта
Москва
Саратов
Абакан
Азов
Актау
Актобе
Алексин
Алматы
Анапа
Ангарск
Апатиты
Арзамас
Армавир
Артемовский
Архангельск
Асбест
Астана
Астрахань
Атырау
Балаково
Балашов
Барнаул
Бежецк
Белгород
Березники
Биробиджан
Бишкек
Благовещенск
Брянск
Великий Новгород
Владивосток
Владикавказ
Владимир
Волгоград
Волгодонск
Волжский
Вологда
Волоколамск
Воронеж
Вышний Волочёк
Геленджик
Дзержинск
Димитровград
Дмитров
Егорьевск
Екатеринбург
Ефремов
Жанаозен
Железногорск (Курская область)
Заринск
Златоуст
Иваново
Ижевск
Иркутск
Ишим
Ишимбай
Казань
Калининград
Калуга
Каменка
Каменск-Уральский
Камышин
Караганда
Кемерово
Кириши
Киров
Кировград
Комсомольск-на-Амуре
Королев
Кострома
Красногорск
Краснодар
Красноярск
Кропоткин
Кузнецк
Курган
Курск
Ленинградская область
Липецк
Лобня
Лысьва
Магнитогорск
Махачкала
Миасс
Минск
Мурманск
Мытищи
Набережные Челны
Надым
Находка
Невинномысск
Нефтекамск
Нефтеюганск
Нижневартовск
Нижний Новгород
Нижний Тагил
Новокузнецк
Новомосковск
Новороссийск
Новосибирск
Новый Уренгой
Ногинск
Октябрьский
Обнинск
Омск
Орел
Оренбург
Пенза
Пермь
Петрозаводск
Петропавловск-Камчатский
Подольск
Псков
Пугачев (Саратовская область)
Пятигорск
Радужный
Реутов
Ржев
Ростов-на-Дону
Рыбинск
Рязань
Салават
Самара
Санкт-Петербург
Саранск
Саяногорск
Северодвинск
Семикаракорск
Смоленск
Снежинск
Соликамск
Солнечногорск
Сочи
Ставрополь
Старый Оскол
Стерлитамак
Сургут
Сызрань
Таганрог
Тамбов
Тверь
Тобольск
Тольятти
Томск
Тула
Тюмень
Улан-Удэ
Ульяновск
Уфа
Хабаровск
Ханты-Мансийск
Химки
Чебоксары
Челябинск
Череповец
Чистополь
Чита
Шатура
Шахты
Электросталь
Элиста
Энгельс
Южно-Сахалинск
Якутск
Ярославль
Юрга
Черкесск
Зеленоград
Новомичуринск
Сыктывкар
Вольск
Муром
Крым
Аксай
Батайск
Ейск
Каменск-Шахтинский
Севастополь
Гродно
Новочеркасск
Магадан
Таллин
Рига
Артем
Горно-Алтайск
Симферополь
Канск
Сосновоборск
Белорецк
Саров
Углич
Евпатория
Копейск
Данков
Отрадный
Новодвинск
Кинель
Клявлино
Бузулук
Нерехта
Ухта
Железногорск (Красноярский край)
Петровск (Саратовская область)
Урюпинск
Кирово-Чепецк
Рузаевка
Глазов
Холмск
Плесецк
Мирный (Арханг. обл.)
Боровичи
Ясногорск
Азнакаево
Братск
Новокуйбышевск
Керчь
Усть-Катав
Котлас
Краснодарский край
Георгиевск
Буденновск
Кингисепп
Чусовой
Усть-Лабинск
Красноуфимск
Ставропольский Край
Нарва
Прокопьевск
Ростов
Новошахтинск
Первоуральск
Осинники (Кемеровская область)
Чебаркуль
Южноуральск
Озерск
Кумертау
Истра
Медвежьегорск
Выборг
Великие Луки
Тимашевск
Богородск
Даугавпилс
Александров
Ташкент
Десногорск
Северск
п. Томилино
Домодедово
Серпухов
Балашиха
Коломна
Люберцы
Пушкино
ВНИИССОК
Раменское
Ивантеевка
Щёлково
Щербинка
Фрязино
Видное
Орск
Кулунда
Кстово
Железногорск-Илимский
Майкоп
Яровое
Ревда
Бийск
Колпино
Всеволожск
Камень-на-Оби
Ковров
Сергиев Посад
Выкса
Ленинградская
Новоспасское
Сосногорск
Водный
Александровское
Адлер
Кудымкар
Нытва
Красновишерск
Заречный (Пензенская область)
Сердобск
Новотроицк
Ливны
Мценск
Зеленогорск
Бородино
Вырица
Светогорск
Волхов
Приозерск
Сясьстрой
Пикалево
Тихвин
Гатчина
Ивангород
Рощино
Сосновый Бор
Павлодар
Белореченск
Юрюзань
Пласт
Сокол
Темрюк
Резекне
Торревьеха
Улан-Батор
Тбилиси
Вильнюс
Баку
Альметьевск
Поспелиха
Тутаев
Белово
Кокшетау
Дегтярск
Шяуляй
Переславль-Залесский
Усть-Илимск
Шуя
Шексна
Урай
Левашово
Пярну
Иглино
Вельск
Шарья
Великий Устюг
Уссурийск
Кулебаки
Белая Калитва
Ялта
Саки
Нарьян-Мар
Узловая
Барановичи
Анжеро-Судженск
Людиново
Абинск
Краснокаменск
Новая Игирма
Воскресенское
Белозерск
Красавино
Самарканд
Феодосия
Бугульма
Зеленодольск
Михайловское
Усть-Каменогорск
Филипповское
Алушта
Павловск
Кулой
Витебск
Курчатов
Лакинск
Ленинск-Кузнецкий
Юрьев-Польский
Учалы
Новочебоксарск
Кондопога
Городец
Кольчугино
Усть-Кут
Норильск
Валдай
Аргаяш
п. Октябрьский
Тулун
Богородицк
Елец
Аркадак (Саратовская область)
Аткарск (Саратовская область)
Ершов (Саратовская область)
Калининск (Саратовская область)
Красноармейск (Саратовская область)
Красный Кут (Саратовская область)
Маркс (Саратовская область)
Новоузенск (Саратовская область)
Ртищево (Саратовская область)
Хвалынск (Саратовская область)
Шиханы (Саратовская область)
Кыштым
Бор
Владимирская область
Душанбе
Солигорск
Брест
Новозыбков
Заречный (Свердловская Область)
Верхняя Салда
Саласпилс
Конаково
Кузоватово
Скопин
Сергач
Клинцы
Бугуруслан
Киреевск
Семенов
Югорск
Нальчик
Коркино
Трехгорный
Дзержинск (Беларусь)
Слуцк
Волковыск
Безенчук
Октябрьск (Самарская область)
Тайга
Чапаевск
Гуково
Донецк (Ростовская область)
Егорлыкская
Зерноград
Миллерово
Сальск
Сравнение кристаллографии, ЯМР и ЭМ
Сравнение кристаллографии, ЯМР и ЭМ
Структурная биология включает в себя методы и принципы молекулярной биологии, биохимии и биофизики как средства выяснения молекулярной структуры и динамики биологически значимых молекул. Недавний прогресс в приборостроении подтвердил новый импульс в структурной биологии, поскольку сложные биологические молекулы теперь можно анализировать с беспрецедентной легкостью и эффективностью. Трехмерная структура белков и белковых комплексов позволяет лучше понять законы жизнедеятельности и механизмы заболеваний, что позволяет рационально разрабатывать новые диагностические и терапевтические средства. Существует три основных метода исследования структурной биологии: дифракция рентгеновских лучей на монокристаллах (SC-XRD), ядерный магнитный резонанс (ЯМР) и криоэлектронная микроскопия (Cryo-EM).Однако универсального метода не существует, поскольку все три из них обладают уникальными преимуществами, а также ограничениями.
Рис.1. Три основных метода исследования структурной биологии. Согласно статистике PDB (https://www.rcsb.org/), с помощью SC-XRD было разрешено более 120 000 белковых структур, что составляет почти 90% от общего числа. И есть около 12000 белковых структур, полученных с помощью ЯМР. Хотя общее количество белковых структур, разрешенных с помощью Cryo-EM, несопоставимо с таковым при использовании первых двух методов, в последние годы наблюдается взрывной рост структур при использовании этого метода.
1. Монокристалл Дифракция рентгеновских лучей
Рентгеновская кристаллография использует рентгеновские лучи для определения положения и расположения атомов в кристалле. Самый классический метод рентгеновской кристаллографии — это дифракция рентгеновских лучей на монокристаллах, при которой атомы кристаллов заставляют падающий рентгеновский луч производить рассеянные лучи. Когда рассеянные лучи попадают на детектор, эти лучи создают спекл-дифракционную картину. По мере постепенного поворота кристалла можно измерить угол и интенсивность этих дифрагированных лучей, а затем создать трехмерное изображение электронной плотности внутри кристалла.На основе этой электронной плотности можно определить среднее положение атомов в кристалле, химические связи, кристаллические барьеры и различную информацию. Для монокристалла с достаточной чистотой, однородностью и регулярностью данные дифракции рентгеновских лучей могут определять средний угол химической связи и длину с точностью до нескольких десятых градуса и нескольких тысячных долей ангстрема соответственно.
Рис.2. Физико-математические основы рентгеновской кристаллографии для решения структуры
Метод дифракции рентгеновских лучей на монокристаллах был предложен и разработан в 1912 году, и он стал наиболее важным и полезным инструментом для определения структуры белка, поскольку структура белка миоглобина была впервые определена в 1958 году.В настоящее время в банке данных белков (https://www.rcsb.org/) депонировано более 140000 белковых структур, почти 90% из которых разрешены с помощью метода дифракции рентгеновских лучей на монокристаллах, что свидетельствует о его преимуществах при изучении структуры биологические кристаллы макромолекул.
Процесс дифракции рентгеновских лучей на монокристалле можно условно разделить на четыре этапа. Первым шагом является получение высококачественных монокристаллов целевого белка, что называется кристаллизацией белка.Когда раствор солюбилизированного белка достигает перенасыщения, он способствует агрегации и нуклеации белка. В конечном итоге отдельные белковые молекулы образуют повторяющуюся серию элементарных ячеек, принимая единообразную ориентацию. Квалифицированные кристаллы должны быть достаточного размера (обычно более 50 мкм по всем измерениям) и качества (правильная структура, без трещин или двойников). Получение монокристаллов высокого качества является ограничивающим шагом для определения структуры с помощью этого метода.
После получения монокристалла требуется дифракционный эксперимент.Кристалл иммобилизуют в интенсивном рентгеновском луче, создавая дифракционную картину, которая записывается как данные дифракции (угол и интенсивность дифрагированных рентгеновских лучей). По мере того как кристалл постепенно поворачивается, предыдущие отражения исчезают и появляются новые. Интенсивность дифракции в каждом пятне регистрируется с каждого направления кристалла.
Впоследствии данные дифракции, полученные из дифракционной картины, комбинируются с различными методами структурного анализа и подбора данных для анализа распределения электронной плотности в трехмерном пространстве внутри элементарной ячейки.
На последнем этапе на основе карты электронной плотности может быть создана и уточнена модель расположения атомов в кристалле.
Рис.3. Метод рентгеновской дифракции на монокристаллах
Этот метод может обеспечить высокое атомное разрешение и не ограничен молекулярной массой образца. Он подходит для водорастворимых белков, мембранных белков, а также макромолекулярных комплексов. При правильном манипулировании он становится мощным инструментом для доставки надежных структурных данных биологических макромолекул и определения положения и структуры активного центра, а также помогает понять, как белок распознает и связывает молекулы лиганда на атомном уровне.
Однако метод дифракции рентгеновских лучей на монокристаллах также имеет несколько недостатков. Во-первых, образец должен быть кристаллизованным, но кристаллизация биологических макромолекул с большой молекулярной массой может быть затруднена, в частности, мембранные белки сложнее кристаллизовать из-за их большого размера и плохой солюбилизации. Во-вторых, должен быть получен организованный монокристалл, обеспечивающий соответствующую дифракцию. Наконец, полученная трехмерная структура биологического образца представляет собой только статическую форму исследуемой молекулы (одна из многих возможных), а не динамическая.
2. Ядерный магнитный резонанс (ЯМР)
Второй метод — ядерный магнитный резонанс (ЯМР). Ядра — это заряженные, быстро вращающиеся частицы, похожие на внешние электроны. Гиромагнитные отношения разных атомных ядер различны и поэтому имеют разные резонансные частоты. Движение ядра не изолировано — оно взаимодействует с окружающими атомами как внутри-, так и межмолекулярно. Следовательно, с помощью спектроскопии ядерного магнитного резонанса можно получить структурную информацию о данной молекуле.Если взять белок в качестве примера, его вторичная структура, такая как α-спираль, β-лист, виток, круг и завиток, отражают различное расположение атомов основной цепи молекул белка в трехмерном пространстве. Расстояние между атомными ядрами в различных вторичных доменах, взаимодействие между ядрами и динамические характеристики полипептидных сегментов напрямую отражают трехмерную структуру белков. Все эти ядерные особенности вносят вклад в спектроскопическое поведение анализируемого образца, обеспечивая, таким образом, характерные сигналы ЯМР.Интерпретация этих сигналов компьютерными методами приводит к расшифровке трехмерной структуры.
Рис.4. Ядерный спин
С момента первого наблюдения сигналов ЯМР в конденсированном состоянии в 1946 году технология ЯМР бурно развивалась на протяжении более 70 лет, и ее применение распространилось из области физики, такой как определение магнитного момента ядра, на химию, медицину, материаловедение, науки о жизни и многие другие. Примечательно, что в 1980-х годах технология ЯМР была творчески применена в структурном анализе белка, что способствовало применению ЯМР в биологической области.Хотя объем данных о трехмерной структуре белков, полученных с помощью технологии ЯМР, несравним с данными по дифракции рентгеновских лучей на монокристаллах, уникальные преимущества технологии ЯМР широко заметны: ЯМР может предоставить информацию на кинетической основе таким образом, может быть решено внутреннее перемещение белков в различных временных масштабах и их механизм связывания с лигандами.
ЯМР-эксперимент состоит из четырех основных этапов: подготовка образца, сбор данных, спектральная обработка и структурный анализ.ЯМР-анализ проводится на водных образцах белка с высокой чистотой, высокой стабильностью и высокой концентрацией. Объем образца от 300 до 600 мкл с диапазоном концентраций 0,1–3 мМ. Использование стабильных изотопов 15N, 13C и 2H для мечения белков может эффективно увеличить интенсивность сигнала и разрешение. Селективное мечение определенных аминокислот или химических групп белков может значительно уменьшить перекрытие сигналов. Для получения информации о белке используются многомерные ЯМР-эксперименты.Затем выполняется спектральная обработка для определения атомов белка, соответствующих каждому спектральному пику на разных спектрах ЯМР. Наконец, ряд пространственно структурированной информации, такой как константы связи NOE и J, используется для расчета пространственной структуры с использованием методов дистанционной геометрической или молекулярной динамики.
Рис.5. Технология ядерного магнитного резонанса
Наиболее важной особенностью метода ЯМР является то, что трехмерную структуру макромолекул в естественном состоянии можно измерить непосредственно в растворе, а ЯМР может предоставить уникальную информацию о динамике и межмолекулярных взаимодействиях.Разрешение макромолекулярной трехмерной структуры может быть ниже субнанометра.
Однако спектр ЯМР биомолекул с большой молекулярной массой очень сложен и труден для интерпретации, что ограничивает применение ЯМР при анализе больших биомолекул. Кроме того, этот метод требует относительно большого количества чистых образцов (порядка нескольких мг) для достижения приемлемого уровня отношения сигнал / шум.
3. Криоэлектронная микроскопия (Cryo-EM)
Третий подход — это метод криоэлектронной микроскопии (Крио-ЭМ), который включает три различных метода: анализ отдельных частиц, электронную томографию и электронную кристаллографию.Существенный механизм Cryo-EM — рассеяние электронов. Основной принцип описывается следующим образом. Перед анализом образцы готовят путем криоконсервации. Когерентные электроны используются в качестве источника света для измерения образца. После того, как электронный луч проходит через образец и ближайший слой льда, система линз преобразует рассеянный сигнал в увеличенное изображение, записанное на детекторе. И обработка сигнала выполняется для получения трехмерной структуры образца.
Электронная микроскопия технология трехмерной реконструкции была впервые открыта в 1968 году. Трехмерная структура хвоста фага Т4 была реконструирована с помощью электронных микрофотографий. И тогда были предложены общая концепция и методы трехмерной реконструкции электронной микроскопии. Для уменьшения радиационных повреждений в 1974 году была создана криогенная электронная микроскопия. После более чем 30-летнего развития Cryo-EM стала мощным инструментом для изучения структуры биологических макромолекул.В последние годы технология Cryo-EM достигла революционного прогресса, особенно в анализе отдельных частиц. С 2013 года, благодаря огромным достижениям в области детекторов электронов и обработки изображений, крио-ЭМ анализ одиночных частиц развивался настолько быстро, что разрешение Cryo-EM теперь сравнимо с разрешением дифракции рентгеновских лучей на монокристаллах. В настоящее время Крио-ЭМ становится мощным инструментом для определения структуры биологических макромолекул с высоким разрешением.
Перед использованием Cryo-EM для наблюдения за образцом можно использовать отрицательное окрашивание EM для быстрого скрининга однородного образца.Метод анализа одиночных частиц Cryo-EM начинается с стеклования образца. Во время этого процесса раствор белка мгновенно охлаждается, поэтому молекулы воды не кристаллизуются, образуя аморфное твердое вещество. Затем замороженный образец проверяется, и данные собираются в системе. В этот период можно сделать серию двумерных изображений. Затем на основе большого количества полученных двумерных изображений выполняется выравнивание и классификация частиц. В конце данные обрабатываются программным обеспечением реконструкции для создания трехмерной структурной модели.
Рис.6. Процесс анализа одиночных частиц Cryo-EM
По сравнению с дифракцией рентгеновских лучей на монокристалле, обработка образца быстрым замораживанием поддерживает его состояние, близкое к естественному. Более того, этот метод требует лишь небольшого количества образца (около 0,1 мг), более прост в отношении чистоты образца и не требует кристаллизации белка.
Главный недостаток этого метода заключается в том, что частицы обнаруживаются в неизвестной ориентации.Высокий уровень шума из-за использования ограниченных доз электронов для минимизации радиационного повреждения, особенно при высоком разрешении, имеет тенденцию усложнять определение этих ориентаций, и это особенно важно для более мелких частиц. Следовательно, определение структуры биологических макромолекул с помощью Cryo-EM было ограничено большими комплексами или моделями с низким разрешением в течение последних нескольких лет.
Рис.7. Криоэлектронная микроскопия
4. Резюме
Таким образом, каждая технология имеет свои преимущества в определенных приложениях, так что в одних случаях один метод может использоваться широко, а в других — редко.Таким образом, понимание характера анализа является ключевым при выборе метода. Неправильный выбор метода не только приведет к скомпрометированным результатам, он также может вызвать значительные задержки проекта и привести к финансовым потерям. Для получения дополнительной информации см. Таблицу 1.
Преимущества | Недостатки | Объекты | Разрешение | |
Рентгеновская кристаллография | • Хорошо проработанный • Высокое разрешение • Широкий диапазон молекулярной массы • Простота построения моделей | • Трудно для кристаллизации • Трудно для дифракции • Предпочтительно твердая структура • Статическая структура в кристаллическом состоянии | • Кристаллизующиеся образцы • Растворимые белки, мембранные белки, рибосомы, ДНК / РНК и белковые комплексы | Высокий |
ЯМР | • Высокое разрешение • Трехмерная структура в растворе • Подходит для динамического исследования | • Необходимость в высокой чистоте пробы • Сложно для пробоподготовки • Сложно для компьютерного моделирования | • ММ ниже 40–50 кДа • Водорастворимые образцы | Высокая |
Крио-ЭМ | • Простая подготовка образца • Структура в исходном состоянии • Небольшой размер образца | • Относительно низкое разрешение • Применимо только к образцам с высоким молекулярным весом • Сильно зависит от методов ЭМ • Дорогостоящее оборудование ЭМ | •> 150 кДа • Вирионы, мембранные белки, большие белки, рибосомы, комплексные соединения | Относительно низкий ( |
Таблица 1 Сравнение рентгеновской кристаллографии, ЯМР и крио-ЭМ
Ссылки
- Ван, Х.W .; Ван, В. Как криоэлектронная микроскопия и рентгеновская кристаллография дополняют друг друга. Protein Science 2017, 26 (1): 32-39.
- Ранкин, Н .; и др. . Появление метаболомики протонного ядерного магнитного резонанса в сердечно-сосудистой системе с клинической точки зрения. Атеросклероз 2014, 237 (1): 287-300.
- Каррони М., Сайбил Р. Криоэлектронная микроскопия для определения структуры макромолекулярных комплексов. Методы 2016, 95: 78-85.
- Каллавей, Э. Революция не будет кристаллизоваться: новый метод пронизывает структурную биологию. Nature News 2015 525 (7568): 172.
Только для исследовательских целей. Не предназначен для диагностического, терапевтического или какого-либо клинического использования.
Услуги рентгеновского оборудования Стоимость Информация о цене
Во многих отношениях рентгеновский аппарат является краеугольным камнем в области медицинской визуализации.Рентгеновские системы являются наиболее широко используемым методом лечения в больницах, клиниках и на дому. Именно поэтому так важно иметь план, позволяющий поддерживать вашу рентгеновскую систему в рабочем состоянии.
Чтобы помочь вам узнать, сколько вы можете рассчитывать платить ежегодно по соглашению о рентгеновских услугах через независимую сервисную организацию (ISO), мы обновили этот пост (впервые опубликован в 2016 году) с указанием текущих средних ставок за год нашего наиболее инклюзивный план полного обслуживания , а также краткий список факторов, которые будут влиять на определение вашей индивидуальной цены.
Что влияет на стоимость рентгеновских услуг?
Возраст системы: В большинстве случаев, чем старше устройство, тем меньше затраты на его обслуживание. Доступность деталей увеличивается по мере старения системы, и все больше инженеров приобретают опыт работы с этой моделью.
Расположение: Дорожные расходы, такие как проживание, аренда автомобиля или авиабилеты, учитываются при расчете стоимости услуг. Чем ближе инженер, тем меньше он платит за проезд, тем меньше вы заплатите за договор.
Детали: Все рентгеновские аппараты имеют детали, которые со временем необходимо будет заменить.Если деталь найти сложнее, ее, вероятно, будет дороже купить. Например, некоторые рентгеновские трубки доступны только у производителей оригинального оборудования. Обычно это самый дорогой источник запчастей. Если это так для вашей модели, поставщик учтет это при составлении предложения.
Варианты покрытия: Чем более всеобъемлющим будет ваше покрытие, тем выше будет цена. Как мы упоминали ранее, приведенная ниже таблица цен относится к нашему плану полного обслуживания, но доступны и другие варианты.
Посетите нашу страницу вариантов обслуживания, чтобы увидеть планы, из которых вы можете выбрать.
Марка и модель: С некоторыми рентгеновскими аппаратами легче работать, чем с другими. Это означает более низкую стоимость услуг. Прекрасным примером этого является работа над системами GE в США, где они занимают значительную долю рынка. Это дает экономию, потому что запчасти более доступны, и есть больше инженеров, обученных обслуживанию моделей GE.
Несколько систем и несколько лет: Это не всегда верно, но вы часто можете снизить стоимость одной системы, если покупаете сразу для нескольких систем.Точно так же увеличение срока действия контракта на обслуживание может снизить годовые затраты.
Что в итоге?
Учитывая, как выглядят указанные выше факторы для вашей системы и вашего предприятия, представляет собой среднее значение того, что вы можете ожидать от цен на рентгеновские услуги. Не забывайте, что эти цифры отражают средние затраты на полное покрытие услуг.
Тип системы | Среднегодовая стоимость |
AmRad | 8 000–9 000 долларов |
GE AMX IV | 4250–4 750 долларов |
GE Definium 5000 | 25 500–28 500 долларов |
GE Definium 8000 | 25 500–36 500 долларов |
GE Дискавери XR650 | 29 000–37 500 долл. США |
GE Дискавери XR656 | 33 000–37 500 долл. США |
GE Протей | 7500–8250 долларов |
GE Силуэт | 8 250–9 250 долларов |
GE XQi | 28 000–32 000 долл. США |
GE XRd | 21 750–28 250 долл. США |
Siemens Multix | 15 250–16 750 долларов |
Если вы хотите узнать больше об обслуживании, поддержке и запчастях рентгеновского оборудования, вы также можете ознакомиться со следующими статьями:
Если вы хотите настроить параметры обслуживания и снизить индивидуальные затраты, используйте кнопку ниже, чтобы увидеть больше.
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Динамическая настройка FRET в биосенсоре зеленого флуоресцентного белка
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Кристаллическая структура Twitch-2B
Мы расшифровали структуру с разрешением 2,5 Å (таблица S1A). Асимметричный блок состоит из двух мономеров (рис. S1A). Они представляют идентичные конформации отдельных доменов [среднеквадратичные отклонения (RMSDs) ниже 0,2 Å] и несколько иную междоменную конформацию (RMSD 0,992 Å), но, по-видимому, не собираются как симметричный гомодимер.Их интерфейс (рис. S1B), покрывающий 630 Å 2 ( 11 ), на самом деле значительно меньше, чем интерфейс стабильного димера ( 12 ). Кроме того, данные малоуглового рентгеновского рассеяния (МУРР) показывают, что в растворе Twitch-2B является мономерным (рис. S2). Поэтому мы сфокусируем наше описание здесь на мономере A. Кристаллическая структура показывает расположение донора и акцептора относительно минимального кальций-связывающего домена TnC, а также структуру оптимизированных линкеров (рис.1). Структура кальций-связывающего домена очень похожа на C-концевой глобулярный домен куриного TnC (RMSD 0,84 Å) ( 13 ), на структуру ЯМР, решенную ранее ( 8 ), и на структуру кальмодулина. (RMSD 1,08 Å) ( 14 ). Главные оси двух бочкообразных β-доменов флуоресцентного белка ориентированы почти под перпендикулярным углом друг к другу. Стволы β практически не контактируют друг с другом (рис. 2A) с очень маленькой общей границей раздела (150 Å 2 ).Интерфейсы минимального кальций-связывающего домена с mCerulean3 и cpVenus cd также относительно малы, охватывая только 257 и 351 Å 2 соответственно (см. Ниже). Взаимодействия в основном носят гидрофильный характер (рис. 2А).
Рис. 2 Структурные детали Twitch-2B.( A ) Полярные взаимодействия между остатками минимального домена TnC, mCerulean3 и cpVenus cd показаны пунктирными линиями. Остатки показаны в виде палочек.( B ) Полярные взаимодействия, опосредованные остатками (показаны в виде стержней) от линкеров между mCerulean3 и кальций-связывающим доменом (у лосося), а также взаимодействия между cpVenus cd и кальций-связывающим доменом (пурпурный) . ( C ) Гидрофобные взаимодействия между остатками (показаны в виде стержней) линкеров между mCerulean3 и кальций-связывающим доменом (у лосося), а также линкером между cpVenus cd и кальций-связывающим доменом (пурпурный) с остатками (серым цветом) из ядра минимального домена TnC.( D и E ) Крупный план области вокруг N532 Twitch-2B и мутанта N532F Twitch-2B (Twitch-6).
Линкер между mCerulean3 и кальций-связывающим доменом (V 232 ADA) образует спираль 3 10 , которая прочно удерживается на месте водородными связями основной цепи от V232 и S236 в mCerulean3 до E301 и E239 кальция. -связывающий домен (рис. 2Б). Далее линкер между кальций-связывающим доменом и cpVenus cd (P 305 IYPEL) образует полтора α-спиральных витка (рис.2, B и C), карбонилы основной цепи E309 и L310 образуют водородные связи с боковой цепью R551 (рис. 2B) cpVenus cd . Боковая цепь E309 также образует водородную связь с Y152 mCerulean3, плотно связывая три домена вместе. Остатки I306, Y307 и L310 этой короткой спирали участвуют в сети гидрофобных контактов (рис. 2C). Очевидно, что скрининг оптимальных линкеров ( 8 ) привел к последовательностям со спиральными элементами, очень хорошо интегрирующимися в структуру минимального домена TnC, в то время как эти линкеры удерживают на месте донорный и акцепторный домены в основном за счет полярных взаимодействий.
Расчет эффективности FRET на основе структуры
Структура предоставила важную информацию для расчетов FRET. Во-первых, расстояние между центрами масс флуорофоров составляет 3,65 нм (рис. 1B). Затем внутри структуры флуорофоры mCerulean3 и cpVenus cd выровнены в конфигурации «голова к голове». Таким образом, мы могли точно определить относительную ориентацию дипольных моментов флуорофоров (рис. 1C; см. Материалы и методы), которые доступны из расчетов теории функционала плотности ( 15 ).Используя эту объединенную информацию, мы вычислили коэффициент ориентации κ 2 , равный 1,98 (уравнение 1; материалы и методы), и расстояние Ферстера, R 0 , 6,9 нм для mCerulean3 / cpVenus cd . Пара FRET (уравнение 3; материалы и методы). С этими параметрами, используя уравнение Фёрстера, E = R06 / (R06 + r6), теоретическая эффективность FRET, E , Twitch-2B была определена как 0,98. Эффективность FRET, экспериментально определенная с помощью деканшинга донора, равна 0.78 (рис. S3A), что значительно ниже, чем полученное из кристаллической структуры.
Два мономера Twitch-2B в асимметричном блоке (рис. S1A) не только имеют очень похожую конформацию (RMSD основной цепи 0,992 Å), но также образуют очень похожие контакты упаковки кристаллов (рис. S1C). Таким образом, мы делаем вывод, что ориентация доменов в мономере сама по себе не ограничивается кристаллической упаковкой, а в основном внутримономерными взаимодействиями, описанными выше (рис. 2А), и очень вероятно выбрана из пула уже существующих конформаций в растворе.Поскольку междоменные интерфейсы в мономере Twitch-2B относительно малы (рис. 2A), высокая гибкость решения может быть причиной наблюдаемого снижения эффективности FRET. Чтобы исследовать эту гипотезу, мы затем обратили внимание на передовые методы ЯМР.
ЯМР-исследование динамики биосенсора
Чтобы получить представление о возможной динамике, мы использовали парамагнитный ЯМР ( 16 ) с образцом Twitch-2B, где два сайта связывания кальция TnC были загружены диспрозием (Dy).Анизотропная магнитная восприимчивость комплекса TnC-Dy 2 индуцирует парамагнитный тензор выравнивания, который может быть определен из структуры ( 17 ) (см. Материалы и методы). Мы использовали спектрометры на 900 МГц и 1,1 ГГц, поскольку тензор юстировки квадратично зависит от магнитного поля. Если данный флуоресцентный белок является жестким по отношению к TnC, то тензор выравнивания, который он испытывает, идентичен TnC. Если, однако, флуоресцентный белок является динамическим по отношению к TnC, то это движение уменьшит тензор выравнивания первого ( 16 , 18 ).Это позволяет количественно оценить динамику флуоресцентных белков по отношению к TnC. В то время как диполярные связи усредняются в изотропном растворе из-за случайного изотропного переворачивания, парамагнитно-индуцированные тензоры выравнивания приводят к анизотропному распределению ориентации TnC и, следовательно, прикрепленных зеленых флуоресцентных белков в растворе, что приводит к неполному усреднению диполярного муфты, позволяющие наблюдать остаточные диполярные связи (RDC). Мы определили RDC метильных групп парамагнитно выровненного Twitch-2B ( 19 ) (см. Материалы и методы).Наблюдаемый диапазон RDC достаточен для измерения размера тензора выравнивания ( 20 ), так что отнесение метильных групп не было необходимым.
Мы обнаружили, что диапазон значений RDC и, следовательно, тензор выравнивания, испытываемый флуоресцентными белками, в 10 раз меньше, чем рассчитанные по жесткой рентгеновской структуре (рис. 3; см. Материалы и методы). Таким образом, динамика должна быть причиной несоответствия между расчетной и экспериментальной эффективностями FRET.Кристаллическая структура может быть только частью динамического конформационного ансамбля в растворе.
Рис. 3 Гистограммы парамагнитных данных RDC.Прогнозирование RDC метильных групп в двух доменах флуоресцентного белка и TnC с использованием рентгеновской структуры (выделено пурпурным цветом). Тензор выравнивания, индуцированный двумя ионами диспрозия, связанными с TnC, является результатом трансляции тензора, полученного из кальмодулина (см. Материалы и методы). Экспериментальные RDC от парамагнитного ЯМР Twitch-2B (зеленый) и Twitch-6 (пурпурный).Дальность действия уменьшается в 10 и 5 раз для Twitch-2B и Twitch-6 соответственно.
Структурный дизайн мутанта с улучшенной эффективностью FRET
Предполагая структурную целостность отдельных доменов, мы предположили, что линкерные области являются стержнем этой динамики. На границах раздела между доменом TnC и донорным и акцепторным доменами преобладают полярные взаимодействия (рис. 2А). Мы предположили, что замена этих взаимодействий гидрофобными контактами сделает линкеры жесткими и увеличит экспериментальную эффективность FRET.С этой целью мы разработали мутацию N532F (рис. 2, D и E) на поверхности cpVenus cd , создавая новое взаимодействие с F249 кальций-связывающего домена (рис. 2D). Как и ожидалось, эта мутация вызвала существенное увеличение максимального изменения отношения FRET с 800 до 1100% in vitro (рис. S4). В кристаллической структуре этого мутанта (Twitch-6; таблица S2) боковая цепь F532 действительно связывается в гидрофобный карман, образованный боковыми цепями F249, Asp262 и Y338 (рис. 2E).В остальном структуры Twitch-6 и Twitch-2B очень похожи (RMSD 0,25 Å), что приводит к почти идентичной теоретической эффективности FRET (см. Дополнительные материалы). Благодаря этой конструкции экспериментальная эффективность FRET Twitch-6 увеличилась до 0,90, с 0,78 для Twitch-2B (рис. S3B), а диапазон RDC, измеренных с Twitch-6, удвоился по сравнению с Twitch-2B (рис. 3). . Это указывает на сужение интерфейса между доменом TnC и cpVenus cd , и, таким образом, снижение динамики между доменами является причиной увеличения FRET.
Конформационные ансамбли в решении
Определив динамику как причину снижения эффективности FRET Twitch-2B в решении, мы хотели получить представление о конформационном пространстве, возникающем в результате этой динамики. Для этой цели мы выбрали конформационные ансамбли, исследующие динамику скелета исключительно на динамических линкерных областях между доменами флуоресцентного белка и доменом TnC (см. Материалы и методы), оценивая более 1 миллиона шестичленных ансамблей против наблюдаемых RDC и эффективности FRET (Таблица 1, рис.4 и Материалы и методы). Среди всех возможных ансамблей мы выбрали тот, который лучше всего воспроизводит как экспериментальную эффективность FRET, так и диапазон RDC (Таблица 1). Этот ансамбль полностью объясняет, как гибкость неупорядоченных остатков линкерных областей приводит к наблюдаемому снижению эффективности FRET и диапазона RDC.
Таблица 1 Результаты выбора ансамбля. Рис. 4 Ансамбли белков Twitch, согласующиеся с измеренными эффективностями RDC и FRET.Ансамбли для Twitch-2B (слева) и Twitch-6 (справа) содержат по шесть структур каждый, причем самые большие отклоняющиеся структуры показаны зеленым и красным.Состояния, которые не являются этими крайними конформациями, прозрачны.
Влияние на улучшенную конструкцию датчика FRET
Таким образом, мы получили кристаллическую структуру флуоресцентного биосенсора кальция Twitch-2B и вместе с динамикой линкеров, определенной с помощью парамагнитного ЯМР, мы количественно оценили эффективность FRET. Поскольку динамика ограничивала эффективность FRET, мы успешно сконструировали ригидифицированный мутант с увеличенным FRET. Таким образом, структурные и динамические характеристики ратиометрических датчиков FRET обеспечили принципы проектирования, которые могут быть применимы к другим системам, в которых эффекты FRET используются для восприятия сигналов.
МАТЕРИАЛЫ И МЕТОДЫ
Клонирование, экспрессия и очистка Twitch-2B и Twitch-6
Конструкция Twitch-2B была описана ранее ( 8 ). Для настоящего исследования кодирующую последовательность трехдоменного слитого белка клонировали в модифицированный вектор pET16b, кодирующий слитый белок с N-концевой меткой His 7 и расщепляющей последовательностью, распознающей вирус травления табака (TEV). Мутант Twitch-2B N532F (Twitch-6) был создан с использованием набора для сайт-направленного мутагенеза QuikChange (Agilent).Экспрессионные конструкции pET16bTEV-Twitch-2B и pET16bTEV-Twitch-6 трансформировали в штамм Escherichia coli BL21 (DE3). Экспрессию белка проводили при 303 К индукцией 0,5 мМ изопропил-β-d-1-тиогалактопиранозидом. Клетки собирали через 7 часов после индукции. Меченный селенометионином белок Twitch-2B был сверхэкспрессирован в штамме B834 метионин-ауксотрофа E. coli в минимальной среде с добавлением (+) — l-селенометионина в соответствии с группой по экспрессии белка EMBL (Европейская лаборатория молекулярной биологии) (www.embl.de).
Осадок клеток из 1 литра встряхиваемой культуры ресуспендировали в 60 мл лизирующего буфера [20 мМ трис-HCl (pH 7,9), 300 мМ NaCl, 20 мМ имидазол, 0,5 мМ фенилметилсульфонилфторид с одной таблеткой полного количества ЭДТА- свободных ингибиторов (Roche) на 100 мл лизирующего буфера]. Клетки лизировали ультразвуком с последующим центрифугированием при 27000 g и 277 К. Из супернатанта рекомбинантный белок очищали с помощью аффинной хроматографии с иммобилизованным металлом на 3 мл агарозной смолы Ni-нитрилотриуксусной кислоты (NTA) (Qiagen).Метку слияния His 7 отщепляли протеазой TEV и удаляли инкубацией с 1 мл Ni-NTA агарозной смолы. Белок диализовали против 20 мМ трис (pH 7,0) и 150 мМ NaCl. После доведения концентрации сульфата аммония в растворе белка до 1 М белок дополнительно очищали с помощью хроматографии гидрофобного взаимодействия на колонке с фенилсефарозой (GE Healthcare) объемом 10 мл. Белок элюировали с этой колонки 50-мл градиентом от 1 до 0 М сульфата аммония.Фракции, содержащие белок, объединяли и концентрировали до объема 2,5 мл с помощью концентратора для ультрафильтрации с MWCO (пороговая молекулярная масса) 30 кДа (Vivascience). Наконец, белок очищали эксклюзионной хроматографией на гель-фильтрационной колонке HiLoad 26/60 Superdex 200 мкг. Фракции пика объединяли, диализовали против 20 мМ трис-HCl (pH 7,0), 100 мМ NaCl и 5 мМ CaCl 2 , и концентрацию белка доводили до 20 мг / мл.
Флуоресцентная спектроскопия
Для спектроскопии рекомбинантного Twitch-2B in vitro белок был очищен от E.coli с использованием смолы Ni-NTA, как описано ( 6 ). Спектроскопию выполняли на спектрофотометре Cary Eclipse (Varian). Донорское расщепление Twitch-2B проводили путем переваривания Twitch-2B в связанном с кальцием состоянии в течение ночи при комнатной температуре с химотрипсином (70 Ед / мл; Sigma-Aldrich) при записи FRET. Небольшое оставшееся излучение cpVenus cd после расщепления химотрипсина было выборочно фотообесцвечено (5 мин) с помощью матрицы из шести светодиодов Luxeon Lumiled с пиком на длине волны 530 нм, с общей рассеиваемой мощностью 14.7 Вт и 870 люмен. Для защиты mCerulean3 от обесцвечивания использовали LP (длиннопроходный) фильтр с длиной волны 500 нм. Связанный с кальцием Twitch-6 был очень устойчив к перевариванию протеазой. Поэтому EGTA (конечная концентрация 5 мМ) добавляли во время переваривания химотрипсина, чтобы получить спектр деквенированного mCerulean3.
Кристаллизация, сбор данных и определение структуры
Кристаллы Twitch-2B и Twitch-6 были получены путем диффузионного смешивания паров 1 мкл раствора белка с 1 мкл раствора для лунок [0.2 M Na-формиат (pH 7,0), 5 мМ CaCl 2 и от 18 до 20% полиэтиленгликоля 3350]. Кристаллы были подвергнуты криозащите, перенеся их в лунку с добавлением 16-18% глицерина на 1 мин и быстро охладив, погрузив в жидкий азот.
Сбор данных производился в PXII, SLS, Швейцария, с использованием детектора PILATUS 6M (Dectris). Собственные данные собирали при 100 К на длине волны 1 Å. Данные по производному селенометионина были измерены при 0,98 Å. Все данные были обработаны с помощью программного обеспечения для детектора рентгеновских лучей (XDS) ( 21 ) и масштабированы с помощью SADABS (Bruker AXS).Определение пространственной группы и статистический анализ выполняли с использованием XPREP (Bruker AXS). Фазирование выполняли с помощью AutoSol ( 22 ).
Первоначальная модель была построена с помощью AutoBuild и дважды уточнена с помощью phenix.refine ( 23 ) с промежуточным созданием модели вручную с помощью Coot ( 24 ). Окончательная модель была получена путем комбинированного ручного отслеживания (Coot) и уточнения с использованием Refmac5 ( 25 ). На графике Рамачандрана 96,69% остатков располагались в предпочтительной области 2.72% в разрешенной области и 0,58% остатков были выбросами. Кристаллическая структура Twitch-6 была решена с помощью PHASER ( 26 ), используя PDB (Protein Data Bank) запись 6GEL в качестве модели поиска. Построение и уточнение модели выполнялись, как описано для Twitch-2B. Для этого мутанта 96,68% остатков попали в предпочтительную область графика Рамачандрана, 2,83% попали в разрешенную область и 0,49% были выбросами.
Расчеты FRET
Фактор ориентации κ 2 может быть извлечен из структурной информации следующим образом: κ2 = (cos θT — 3 cos θD cos θA) 2 (1) где θ T — угол между эмиссионным переходом диполь донора и диполь перехода поглощения акцептора; θ D и θ A — углы между этими диполями и вектором r , соединяющим донорный и акцепторный флуорофоры ( 27 ).Ориентация дипольных моментов перехода относительно вектора связи C → O (ω) в градусах ωD = 73 ° ωA = 76 ° была взята из Ansbacher et al. ( 15 ), а угловые параметры были извлечены из кристаллографических координат в угловых единицах θT = 152,95 ° θD = 149,17 ° θA = 26,79 °
Подробные расчеты поясняются в файле данных S1. Интеграл перекрытия, J (λ), был рассчитан из экспериментальных спектров поглощения и излучения изолированных доменов cpVenus и mCerulean3 соответственно (рис.S5) со сценарием Python, включенным в качестве дополнительной информации. J (λ) был определен как 2,052 × 10 15 M −1 см −1 нм 4 , следующим образом: J (λ) = ∫0∞FD (λ) εA (λ) λ4dλ = ∫0∞FD (λ) εA (λ) λ4dλ∫0∞FD (λ) dλ (2) где F D (λ) — нормированная интенсивность флуоресценции донора в диапазоне длин волн от λ до λ + Δλ. ε A (λ) — коэффициент экстинкции акцептора при λ.
Расстояние Ферстера, R 0 , может быть вычислено из ранее полученных экспериментальных параметров R0 = 0.211 (κ2n − 4QDJ (λ)) 1/6 (3) где Q D (0,87) — квантовый выход донора в отсутствие акцептора ( 4 ) и n , (1,33) показатель преломления водной среды.
Наконец, эффективность передачи энергии, E , может быть рассчитана как отношение скорости передачи к общей скорости распада донора в присутствии акцептора E = R06R06 + r6 (4)
Следуя этой процедуре, эффективность FRET была определена как E = 0.979, из кристаллографической структуры Twitch-2B. Эквивалентный расчет, выполненный со структурой мутанта Twitch-6, дает E = 0,983 (см. Файлы данных S1 и S2).
ЯМР-спектроскопия
Мы экспрессировали белки Twitch-2B и Twitch-6 в минимальной среде Toronto, приготовленной из 100% D 2 O и пердейтерированной d-глюкозы и дополненной предшественниками аминокислот α-кетомасляной кислотой (метил-13C , 3,3-D2) и α-кетоизовалериановой кислоты (3-метил-13C, 3,4,4,4-D4), таким образом, селективно мечение атомами 13 C и 1 H только метильных групп остатки валина, лейцина и изолейцина, сохраняя при этом остальные атомы C как 12 C и протоны как 2 H ( 19 ).
Сначала изотропные спектры образцов получали в буфере A [20 мМ Mops (pH 7,0), 100 мМ NaCl и 5 мМ CaCl 2 в 100% D 2 O]. Затем белки диализовали против буфера B [20 мМ Mops (pH 7,0), 100 мМ NaCl и 10 мМ EDTA] с последующим диализом против буфера C [20 мМ Mops (pH 7,0) и 100 мМ NaCl] и, наконец, заменяли на буфер С, приготовленный на 100% D 2 O, содержащем три эквивалента диспрозия, перед измерениями ЯМР. Концентрация белка в образцах была примерно 0.5 мМ.
Образцы были протестированы с помощью экспериментов с метил-TROSY ( 19 , 28 ) (рис. S7) при 900 МГц и 1,1 ГГц, а связи J и J + RDC были определены с использованием J -модулированного Эксперимент с метил-TROSY ( 29 ), изображенный на рис. S6 в виде матриц 2048 × 128 комплексных точек данных с 96 переходными процессами на приращение ( t 1 ). Общие использованные задержки модуляции J были следующими: 4, 6, 8, 10, 12, 14, 16, 18 и 20 мс (рис.S8). ЯМР-эксперименты проводились с использованием 5-мм TCI (криозонда тройного резонанса с инверсным детектированием) на спектрометре 900 МГц и 3-мм криозонда TCI на спектрометре 1,1 ГГц, оба оснащены консолями NEO (Bruker). Интенсивности (максимальная амплитуда) сигналов были извлечены с использованием CARA (компьютерное определение резонанса) ( 30 ) в экспериментах с обработкой NMRPipe ( 31 ) и проанализированы с помощью скриптов Python (рис. S8), следуя Pederson et al. ( 29 ).
Расчет парамагнитного тензора
Мы взяли парамагнитный тензор из комплекса кальмодулин-IQ, связанного с диспрозием, из ( 18 ) и рассчитали суммарный тензор дважды занятого кальций-связывающего домена TnC. Сайт связывания кальция 1 TnC перекрывается с сайтом связывания лантанидов кальмодулина (CaM N60D). Мы повернули матрицу выравнивания с сайта связывания кальция из CaM на второй сайт связывания кальция TnC и добавили его к тензору сайта связывания кальция 1, таким образом получив общий тензор TnC.Затем этот тензор использовался для расчета RDC из парамагнитных белков Twitch ACaM = (1,05 10−31−1,92 10−322,04 10−31−1,92 10−32−1,22 10−316,46 10−322,04 10−316,46 10−321,67 10−32 ) ATwitch = (1,46 10−318,39 10−323,46 10−318,39 10−32−1,06 10−312,26 10−323,46 10−312,26 10−32−3,92 10−32)
Тензоры даны в м 3 M −1 .
Генерация ансамбля
Сначала мы индивидуально смоделировали все возможные двугранные углы основной цепи (ϕ и ψ; выборка с шагом 60 °) линкерных остатков (от Arg 229 до Gln 231 для mCerulean3 и Met 311 до Gly 313 для cpVenus), что не привело к стерическому конфликту между одним из модифицированных доменов флуоресцентного белка и доменом TnC.Каждую из двух линкерных областей моделировали независимо. Из всех возможных комбинаций ϕ, ψ (117 649) вращение mCerulean3 привело к 477 возможным конформациям, в то время как cpVenus допустил 84 конформации, обеспечивая в целом 40 086 возможных конформаций.
Во-вторых, мы случайным образом объединили возможные структуры для mCerulean-TnC и TnC-cpVenus в ансамбли из шести членов. Мы произвольно отобрали 1 миллион шестичленных ансамблей из 40 068 возможных ϕ, ψ комбинаций линкеров между mCerulean и TnC и между TnC и cpVenus, чтобы гарантировать правильное исследование конформационного пространства Twitch.
В-третьих, мы рассчитали диапазон RDC (используя тензор, полученный, как описано выше) и FRET ансамблей и сравнили их с экспериментальными значениями, определив коэффициент качества ансамбля Qens = ∑i = 1i = 6 (RDCi − RDCeRDCe) 2+ (FRETi-FRETeFRETe) 2, где RDC i — это диапазоны распределения, субиндекс e указывает экспериментальное значение, а i указывает значение из члена ансамбля. Такое значение добротности отличается от 0, если совпадения предсказанных откликов RDC и FRET от ансамбля отклоняются от экспериментальных данных, и 0 в случае полного совпадения.Наконец, ансамбли были отсортированы по их Q ens , и был выбран самый низкий из них.
Измерения SAXS
Данные SAXS были собраны на канале BM29 Европейского центра синхротронного излучения (ESRF) в Гренобле, Франция, с использованием автоматического устройства смены образцов ( 32 ). Белок диализовали либо против буфера A [20 мМ Mops (pH 7,0), 100 мМ NaCl и 5 мМ CaCl 2 ] (связанное с кальцием состояние), либо против буфера B [20 мМ Mops (pH 7,0), 100 мМ NaCl и 10 мМ ЭДТА] (без кальция).Перед измерением белок центрифугировали для удаления более крупных частиц. Образцы измеряли при концентрациях 2,5, 10 и 20 мг / мл. Буфер для диализа использовали для коррекции эталонного буфера. Данные собирали при 293 К с использованием длины волны 0,995 Å и расстояния от образца до детектора 2,867 м. Загружали сто микролитров каждой концентрации образца, собирали и объединяли 10 кадров. Образцы постоянно подавались в кювету, чтобы минимизировать эффекты радиационного повреждения.Изображения детектора были объединены и преобразованы в одномерные кривые рассеяния, а вклады буфера в рассеяние были вычтены с использованием программного обеспечения BsxCuBE. Дальнейшая обработка данных выполнялась автоматически с использованием онлайн-конвейера EDNA ( 33 ) для оценки качества образца и эффектов радиационного повреждения. Агрегации белков или радиационного повреждения не наблюдалось.
Данные были дополнительно проанализированы с помощью программного пакета ATSAS ( 34 ). Вкратце, первичная обработка и анализ данных проводились с использованием программ PRIMUS ( 35 ) и GNOM ( 36 ).
Теоретическое рассеяние от кристаллической структуры было рассчитано с использованием программы CRYSOL ( 37 ) (рис. S2), а молекулярные массы рассчитаны с использованием образца бычьего сывороточного альбумина в качестве стандарта.
Благодарности: Мы благодарим персонал SLS, X10SA за поддержку при сборе рентгеновских данных и ESRF, BM29 за поддержку при сборе данных SAXS. Мы благодарим M. Paulat, C. Schwiegk и A. Moritz за техническую помощь в производстве белка и K.Оверкамп для масс-спектров электроспрея. С. благодарит T. Gruene и G. Sheldrick за советы по уточнению кристаллической структуры и структурному анализу. К.Г. и П.Т.-М. поблагодарить R. Kuemmerle (Bruker Biospin) за измерения ЯМР на частоте 1,1 ГГц. Финансирование: Эта работа была поддержана Обществом Макса Планка и DFG SFB 870 (O.G.). П.Т.-М. был поддержан докторской стипендией Гумбольдта. Вклад авторов: P.T.-M. выполнен ЯМР. П.Т.-М. и К.Г. разработал парамагнитный метод ЯМР.П.Т.-М. рассчитаны структурные ансамбли. П.Т.-М. и С. выполнены измерения SAXS. К.Г. рассчитал FRET по рентгеновским структурам. T.T. и O.G. определили экспериментальные эффективности FRET. С. кристаллизовал Twitch-2B и Twitch-6 и решил кристаллические структуры. Рукопись написана всеми авторами. С. разработал проект. Конкурирующие интересы: Авторы заявляют, что у них нет конкурирующих интересов. Доступность данных и материалов: Структуры депонированы с кодом 6GEL для биосенсора Twitch-2B и 6GEZ для мутанта Twitch-2B N532F (Twitch-6).Все данные, необходимые для оценки выводов в статье, представлены в документе и / или дополнительных материалах. Дополнительные данные, относящиеся к этой статье, могут быть запрошены у авторов.
Мультиплексная 3D-визуализация FRET в глубоких тканях живых эмбрионов
Эксперименты по визуализации и обработка данных
Система FmFLIM-SLOT объединяет измерение времени жизни FmFLIM с частотной разверткой при множественном возбуждении с объемной визуализацией SLOT (дополнительный рисунок S3a).
Измерения параллельных каналов Ex-Em с помощью FmFLIM
FmFLIM одновременно измеряет время жизни флуоресценции в частотной области на нескольких длинах волн возбуждения по принципу спектроскопии времени жизни флуоресценции с преобразованием Фурье 20,21 .Вместо того, чтобы разделять разные лазерные линии во времени путем включения и выключения лазеров, FmFLIM разделяет лазерные линии возбуждения, запечатывая уникальные частоты модуляции на каждой лазерной линии, так что лазерные линии с разными длинами волн можно различать в частотной области.
Впечатывание частоты осуществляется интерферометром Майкельсона с вращающимся многоугольным зеркалом (48 граней, 55 000 об / мин, диаметр 2,5 дюйма) оптическим рычагом задержки, который генерирует быстрое сканирование разности оптических путей.Когда несколько лазеров возбуждения (на длинах волн 405, 488, 561 и 640 нм) модулируются интерферометром, каждая лазерная линия модулируется с уникальной мгновенной частотой, зависящей от длины волны f = v / λ, где v — мгновенная скорость сканирования оптической задержки интерферометра (дополнительный рисунок S17). Когда модулированный многолинейный лазер используется для возбуждения флуоресцентного образца, фотоны флуоресценции, возбуждаемые определенной лазерной линией, отпечатываются с той же уникальной мгновенной частотой, что и лазер возбуждения, и сигналы фотонов, связанные с каждой линией возбуждения, могут быть считаны с помощью радиочастоты. (RF) понижающее микширование на серии совпадающих частот.Поскольку сигналы нескольких каналов возбуждения имеют различные частоты модуляции и не мешают друг другу во время понижающего РЧ-микширования, несколько каналов возбуждения могут быть активными и обнаруживаться одновременно с помощью принципа мультиплексирования Фурье (частоты модуляции).
В системе FmFLIM фотоны флуоресценции, возбуждаемые несколькими лазерными линиями, дополнительно разделяются по длинам волн излучения и обнаруживаются несколькими детекторами одновременно. Благодаря мультиплексированию возбуждения Фурье и множеству каналов излучения система FmFLIM способна различать фотонные сигналы по спектральным свойствам возбуждения и излучения и параллельно обнаруживать все каналы возбуждения-излучения (Ex-Em).Текущая система FmFLIM способна проводить одновременные измерения на 4 × 4 каналах Ex-Em (спектральная конфигурация показана на дополнительном рисунке S3b), подходящих для большинства распространенных флуоресцентных белков и красителей в видимом диапазоне.
Многоканальные измерения времени жизни в FmFLIM
Время жизни флуоресценции каждого канала возбуждения-излучения измеряется методом времени жизни в частотной области. В дополнение к мультиплексированию Fourier Ex-Em, система FmFLIM также способна выполнять измерения срока службы в нескольких частотных точках в непрерывном диапазоне частот от 10 МГц до максимальной частоты 120–200 МГц в зависимости от длины волны лазера.Эта уникальная особенность обеспечивается оптической линией задержки на основе многоугольного зеркала в интерферометре, скорость развертки задержки которой изменяется линейно от -94 м / с до 94 м / с при частоте повторения 44 кГц. На выходе интерферометра лазерные линии модулируются в циклическую развертку по частоте с максимальными частотами в диапазоне от 120 до 200 МГц (что соответствует лазерной линии 640 нм и 405 нм, соответственно) в пределах 23 мкс (дополнительный рисунок S17). Модуляции с качающейся частотой на четырех лазерных линиях позволяют измерять время жизни флуоресценции в наносекундах со скоростью 44 000 измерений в секунду.
Информация о времени жизни флуоресценции на всех каналах Ex-Em получается параллельно с помощью аналого-цифрового гибридного метода анализа данных, как описано ранее 21 (дополнительный рисунок S18). Короче говоря, для генерации сигнала измерения срока службы на заданных длинах волн Ex-Em (λ x , λ м ) комбинация фотонного сигнала от ФЭУ на длине волны излучения λ м и сигнала с фотодиода, который отслеживает частотную модуляцию лазерной линии λ x отправляются на аналоговый радиочастотный смеситель (Mini-Circuits ZX05-1L-S +), после чего проходит фильтр нижних частот (Mini-Circuits BLP-10.7+) (дополнительный рисунок S18b). Несущая частота результирующего сигнала понижается до 200 ~ 300 кГц. В ФЭУ с λ m фотонные сигналы, возбуждаемые лазерными линиями, отличными от λ x , удаляются в процессе понижающего микширования и фильтрации. Только сигнал, возбуждаемый лазерной линией λ x , участвует в понижающем смешанном сигнале, который содержит информацию о затухании флуоресценции
, где ω — мгновенная частота модуляции лазерной линии λ x , это РЧ-ответ характеристики электрических цепей в канале Ex-Em, — интенсивность сигнала, m, и ϕ — модуляция и фаза частотных характеристик времени жизни флуоресценции образца, и — несущая частота набора понижающего микшированного сигнала гетеродинным понижающим микшированием.Сигналы понижающего микширования на нескольких каналах Ex-Em записываются одновременно с частотой дискретизации 2 МГц многоканальным высокоскоростным дигитайзером, оснащенным процессором сигналов FPGA (NI 5752 и 7962). Регистрируются 44 точки данных на канал на пиксель, чтобы охватить развертку по частоте в оба конца. Весь сбор данных, аппаратное управление и сканирование изображений выполняются с помощью специального программного обеспечения, написанного в LabVIEW (National Instruments).
Сложный РЧ-отклик системы детектирования, характеризуемый и, может быть предварительно откалиброван стандартами времени жизни флуоресценции с известным временем однократного экспоненциального затухания,
, где H — это преобразование Гильберта, m st и ϕ st — это модуляция и фазовые характеристики стандарта срока службы, рассчитанные на основе известного единичного экспоненциального срока службы стандарта.После этого откалиброванный ВЧ-отклик системы может быть удален из частотной характеристики затухания образца
. Частотный отклик затухания готов для анализа с помощью либо итеративного подбора методом наименьших квадратов с соответствующими моделями срока службы, либо разработанного нами неитеративного комплексного подхода на основе векторов. для расчета срока службы в реальном времени 37 . Первый метод был использован для анализа всех результатов в этой статье. Последний метод, который может быть реализован в FPGA 37 , может позволить в будущем анализировать трехмерное изображение в реальном времени.
Объемное изображение с помощью SLOT
Для получения трехмерной пространственной информации об образце спектральное измерение FmFLIM было объединено с SLOT, пространственным измерением. Таким образом, данные FmFLIM-SLOT сформировали 6-мерный объем, где x, z, θ — пространственные координаты сканирования томографической проекции.
Для выполнения FmFLIM-SLOT модулированный лазер с выхода интерферометра был слабо сфокусирован в пучок шириной 15 мкм с глубиной фокуса более 1 мм.Луч возбуждал флуорофоры вдоль линии лазерного пути по объему образца. Эмиссия вдоль пути луча собиралась и записывалась в виде одного пикселя на проекционном изображении (дополнительный рисунок S3). В этом исследовании общая мощность нескольких лазерных линий обычно составляла от 0,1 до 0,5 мВт. Из-за слабой фокусировки луча интенсивность возбуждения была намного ниже, чем при конфокальной микроскопии, и у живых эмбрионов не наблюдалось ни фотообесцвечивания флуоресцентных белков, ни фототоксичности.Флуоресцентное излучение собирали под углом 90 градусов от линии лазерного возбуждения с помощью конденсорной линзы (диаметр 1 дюйм, f = 30 мм) и вогнутого зеркала (диаметр 2 дюйма, f = 25 мм). Полный телесный угол сбора флуоресценции составлял 1,32 ср, что эквивалентно углу сбора идеальной линзы с числовой апертурой 0,66. Коллимированные флуоресцентные излучения были разделены на несколько спектральных полос с помощью дихроичных зеркал и полосовых фильтров и обнаружены несколькими детекторами ФЭУ (Hamamatsu 7422). Излученный возбуждающий лазер собирался фотодиодным детектором для формирования пропускающей оптической проекции.
Для получения данных проекции FmFLIM S ( x , z , θ; ω, λ x , λ м ) при угле проекции θ, два гальванических зеркала сканировали сфокусированное лазерная линия поперек образца с размером пикселя 10 мкм и скоростью пикселя 44000 пикселей / сек. Образец поворачивали с шагом равного угла между каждым выступом. Обычно было получено 180 проекционных кадров с угловым шагом 2 градуса. Размер кадра 2D-проекции обычно составлял 200 × 350 пикселей (x на z), чтобы покрыть весь эмбрион рыбки данио.Полный набор данных проекции S ( x , z , θ; ω, λ x , λ м ) потребовал 12 минут съемки, из которых примерно 5 минут было потрачено на проекцию изображения и остальное при вращении образца. В будущем запись данных и вращение образца можно будет выполнять одновременно, используя спиральную томографию, что позволит сократить время сбора вдвое. Набор данных 6-D проекции S ( x , z , θ; ω, λ x , λ м ) был обработан скриптами MatLab (MathWorks) для получения трехмерного мульти- изображения времени жизни флуоресценции канала.
Обработка данных FmFLIM-SLOT
Поскольку пространственные размеры ( x , z , θ) и временные / спектральные размеры (ω, λ x , λ м ) ортогональны, временная / спектральная и пространственная обработка не мешают друг другу. Аналогично одноканальной томографии FLIM 11,12 , данные FmFLIM-SLOT S ( x , z , θ; ω, λ x , λ м ) впервые прошли реконструкция пространственной томографии и была преобразована в S ( x , z , y ; ω, λ x , λ м ).Затем S ( x , z , y ; ω, λ x , λ м ) был подвергнут анализу срока службы по спектральным размерам (дополнительный рисунок S18b).
Реконструкция томографии требует известного центра вращения. Центр вращения предметного столика относительно проекционных изображений сначала был измерен с помощью фантома флуоресцентных шариков 40 перед визуализацией in vivo .
После восстановления томографии данные многоканального затухания реконструированных вокселей были скорректированы с учетом РЧ-ответа системы, как описано ранее, согласно уравнениям (1, 2, 3).Скорректированные данные затухания были проанализированы с помощью итеративного подбора методом наименьших квадратов с одноэкспоненциальной моделью времени жизни в частотной области, что дало значения интенсивности I ( x , z , y ; λ x , λ m ) и средний срок службы τ ( x , z , y ; λ x , λ м ) на нескольких каналах Ex-Em. Когда образец эмбриона содержал один датчик FRET, изображение времени жизни донорского канала служило индикатором эффективности FRET.Для визуализации с двойным датчиком FRET, в котором два датчика имели спектрально перекрывающиеся флуорофоры, использовался комбинированный метод анализа интенсивности-времени жизни для обработки трехканального I ( x , z , y ; λ x , λ м ) τ ( x , z , y ; λ x , λ м ) объемов и для получения индивидуальных показаний для каждого датчика FRET (дополнительные примечания ).
Визуализация трехмерных объемов времени жизни
Трехмерные объемные данные интенсивности и срока службы были визуализированы в двухмерные проекции для визуализации. Для проекций интенсивности трехмерные объемы всех спектральных каналов были визуализированы индивидуально в 2D-проекции интенсивности с помощью метода проекции максимальной интенсивности (MIP), а затем объединены в 2D-проекции интенсивности в псевдоцвете. 2D-проекции времени жизни были визуализированы из 3D-объемов интенсивности-времени жизни с помощью модифицированного алгоритма MIP, который рассчитывал проекции срока службы как средневзвешенные по интенсивности всех слоев и представлял среднее проекционное изображение в течение всего срока службы на шкале ложных цветов с интенсивностью MIP, отображаемой как яркость.
Вся реконструкция изображений, анализ данных и визуализация данных были выполнены с использованием собственного программного обеспечения, реализованного в MatLab (Mathworks Inc.).
Процедуры для рыбок данио
Разведение и содержание рыбок данио
Рыбки данио ( Danio rerio ) выращивались и содержались в соответствии с описанием 41 . Для получения трансгенных рыбок данио использовали лабораторно инбредный штамм дикого типа AB *. Эмбрионы собирали после естественного нереста, выращивали при 28,5 ° C и стадировали в соответствии с часами после оплодотворения (hpf) до 10 hpf.Затем эмбрионы хранили при комнатной температуре для замедления развития и увеличения временного окна визуализации. Стадии развития эмбрионов оценивали по наблюдениям. Через 20 часов после оплодотворения эмбрионы переносили в среду для эмбрионов, содержащую 0,2 мМ 1-фенил-2-тиомочевину, чтобы предотвратить пигментацию. Все процедуры на животных и экспериментальные процедуры были выполнены в соответствии с «Руководством по уходу и использованию лабораторных животных (8 -е издание )». Протокол использования животных был одобрен Университетским комитетом по использованию и уходу за животными Мичиганского университета (протокол № 4478).
Инъекция красителей для четырехцветных рыбок данио
Cy5-конъюгированный декстран 500 кДа (0,5 мг / мл) вводили подкожно в область заднего туловища 72 hpf трансгенному Tg ( enpep: GFP; pod: nfsB-mCherry ) личинки данио. После инъекции личинок окрашивали 100 мкМ Syto 41 (Life Technologies) в течение 30 минут 26 и трижды промывали зародышевой средой перед визуализацией.
Промотор клонирования и конструирование плазмид
Промоторы enpep были амплифицированы из геномной ДНК рыбок данио с помощью ПЦР и клонированы в вектор p5’E в наборе Tol2 gateway (любезно предоставленном Drs.Чи-бин Чиен и Кристен Кван) 42 . Ген rtTA и промотор Tet-ON ( P Tight ) были амплифицированы из pRetroX-Tet-OnAdvanced и pRetroX-Tight-Pur (Clontech) и клонированы в pME и p5’E в наборе Tol2 gateway. соответственно. Датчик GEpacmC был щедрым подарком от доктора Киса Джалинка 43 . Сенсор кальция CD2V был получен от Addgene (плазмида № 37471).
Трансгенные конструкции были получены в соответствии с опубликованной процедурой для набора шлюзов Tol2 (http: // tol2kit.genetics.utah.edu/index.php/Main_Page).
Создание трансгенных рыбок данио и микроинъекция
Кепированная РНК, кодирующая транспозазу Tol2, была синтезирована из линеаризованной плазмиды с использованием набора для синтеза РНК mMessage mMachine T3 (Ambion) посредством транскрипции in vitro . Для создания трансгенных рыбок данио конструкцию ДНК вводили совместно с РНК, кодирующей транспозазу Tol2, в оплодотворенные яйца. Эмбрионы, экспрессирующие трансген, выращивали до зрелого возраста и скрещивали с рыбками данио дикого типа для получения трансгенных животных зародышевой линии.Экспрессию сенсора индуцировали обработкой 10 мкг / мл доксициклина (Sigma) в течение ночи. Поскольку доксициклин имеет сильную флуоресценцию при возбуждении 405 нм, эмбрионы замачивали и промывали в среде для эмбрионов в течение 30 минут перед визуализацией.
Генерирование тройных трансгенных рыбок данио с индуцибельной экспрессией сенсоров CD2V и GEpacmC
Трансгенная линия рыбок данио Tg ( enpep: rtTA; P Tight : CD2V трансгенных рыбок данио скрещены с трансгенной линией CD2V ) P Tight : GEpacmC ) для получения тройных трансгенных потомков с индуцибельной экспрессией сенсоров CD2V и GEpacmC в канальцах почек.
Крепление рыбок данио
Эмбрионы рыбок данио были закреплены в соответствии с протоколом установки многослойной трубки 44 , который оптимален для покадровой визуализации эмбрионов рыбок данио. Эмбрионы рыбок данио помещали в среду для эмбрионов, содержащую 200 мкг / мл трикаина и 0,1% агарозы с низкой температурой плавления (Sigma), а затем помещали в пластиковые пробирки FEP с внутренним диаметром 0,8 мм (Cole Parmer), заполненные 1% гелем агарозы. Показатель преломления пластика FEP соответствует показателю воды.
Лечение рыбок данио EGTA, BAPTA-AM и иономицином
Эмбрионы рыбок данио обрабатывали в течение 2 часов смесью хелаторов кальция EGTA (Sigma, 3 мМ), BAPTA-AM (Sigma, 100 мкМ) и ионофором иономицином (Millipore, 10 мкМ), приготовленные на среде для эмбрионов.Время обработки 2 часа обеспечило полное проникновение препарата по всему эмбриону. Для визуализации после обработки эмбрионы рыбок данио помещали в лечебный раствор с добавлением 0,1% геля агарозы с низкой температурой плавления и 200 мкг / мл трикаина. Обработка снизила уровень Ca 2+ у эмбриона моложе 36 лет после оплодотворения. Эмбрионы рыбок данио промывали и после визуализации помещали обратно в обычную среду для эмбрионов. В дальнейшем все эмбрионы развивались нормально.
Обработка форсколином и IBMX для рыбок данио
Эмбрионы рыбок данио обрабатывали в течение 2 часов смесью 100 мкМ активатора аденилатциклазы форсколина (Sigma) и 400 мкМ ингибитора фосфодиэстеразы IBMX (Sigma) в среде для эмбрионов.Для визуализации после обработки эмбрионы рыбок данио помещали в лечебный раствор с добавлением 0,1% геля агарозы с низкой температурой плавления и 200 мкг / мл трикаина. Лечение повысило уровень цАМФ в эмбрионе. Затем эмбрионы рыбок данио промывали и помещали обратно в среду для эмбрионов. Все эмбрионы после обработки развивались нормально.
Динамическая структурная биология на основе FRET: проблемы, перспективы и призыв к практикам открытой науки
Понимание того, как биомолекулы соединяют структурную динамику с функцией, лежит в основе нескольких дисциплин и остается выдающейся целью биологии.Связывание конформационных состояний и их переходов с биохимической функцией требует способности точно определять структуру и динамику биологической системы, которая часто изменяется при связывании лиганда или находится под влиянием химических и физических свойств окружающей среды. Наиболее хорошо зарекомендовавшие себя инструменты структурной биологии предоставили с высоким разрешением «снимки» состояний в кристаллизованной или замороженной форме (например, рентгеновская кристаллография и криоэлектронная микроскопия одиночных частиц, криоЭМ) или усредненное по ансамблю всех конформаций. (е.g., ядерный магнитный резонанс, ЯМР; малоугловое рассеяние рентгеновских лучей, МУРР; малоугловое рассеяние нейтронов, МУРН; двойной электронно-электронный резонанс, DEER; поперечно-сшивающая масс-спектрометрия, XL-MS; ансамбль-FRET). В последние годы дальнейшие разработки позволили этим традиционным структурным инструментам обнаруживать конформационную динамику и промежуточные продукты реакции. Например, методы ЯМР (Anthis and Clore, 2015; Clore and Iwahara, 2009; Palmer, 2004; Ravera et al., 2014; Sekhar and Kay, 2019) и методы электронного парамагнитного резонанса (Jeschke, 2018; Jeschke, 2012; Krstić и другие., 2011) были продвинуты для изучения конформационной динамики и захвата временных промежуточных соединений. Кристаллографические исследования с временным разрешением использовались для определения функционально релевантных структурных смещений, связанных с биологической функцией (Kupitz et al., 2014; Moffat, 2001; Schlichting et al., 1990; Schlichting and Chu, 2000; Schotte et al., 2003). ). Достижения в микрожидкостных устройствах для смешивания и распыления позволили использовать криоЭМ с временным разрешением (Feng et al., 2017; Kaledhonkar et al., 2018) и масс-спектрометрию с поперечными связями (XL-MS или CL-MS) (Braitbard et al., 2019; Brodie et al., 2019; Чен и др., 2020; Якобуччи и др., 2019; Мураками и др., 2013; Славин, Калисман, 2018). Прогресс в вычислительных методах также предоставил новые инструменты для изучения биомолекулярной структуры и динамики. Каждое из этих достижений подчеркивает возросшее понимание того, что необходимо напрямую и непрерывно отслеживать динамические свойства отдельных биомолекул, чтобы понять их функции и регуляцию.
В этом контексте FRET (называемый резонансным переносом энергии флуоресценции или резонансным переносом энергии Фёрстера [Braslavsky et al., 2008]) исследования на ансамблевом и одномолекулярном уровнях стали важными инструментами для измерения структурной динамики по крайней мере на 12 порядков во времени и картирования конформационных и функциональных неоднородностей биомолекул в условиях окружающей среды. Исследования FRET, исследующие затухание флуоресценции на уровне ансамбля (Grinvald et al., 1972; Haas et al., 1975; Haas and Steinberg, 1984; Hochstrasser et al., 1992) (FRET с временным разрешением) позволили уже в начале 1970-х годов изучение структурных неоднородностей на временах, превышающих время жизни флуоресценции (несколько нс).Этот подход используется до сих пор (Becker, 2019; Orevi et al., 2014; Peulen et al., 2017) и перенесен в исследования одиночных молекул. Возможность измерения FRET в отдельных молекулах (Deniz et al., 1999; Ha et al., 1996; Lerner et al., 2018a) сделала этот метод еще более привлекательным. Одномолекулярный FRET (smFRET) широко используется для изучения конформационной динамики и биомолекулярных взаимодействий в стационарных условиях (Dupuis et al., 2014; Larsen et al., 2019; Lerner et al., 2018а; Lipman et al., 2003; Маргиттай и др., 2003; Мазаль и Аран, 2019; Michalet et al., 2006; Ореви и др., 2014; Ray et al., 2019; Sasmal et al., 2016; Schuler et al., 2005; Schuler et al., 2002; Steiner et al., 2008; Zhuang et al., 2000). Примечательно, что во многих механистических исследованиях достаточно использовать FRET для различения различных конформаций и определения кинетических скоростей, так что абсолютные эффективности FRET и, следовательно, расстояния не нужно определять. Однако возможность точного измерения расстояний и кинетики с помощью smFRET привела к его появлению в качестве важного инструмента в эту новую эру « динамической структурной биологии » для картирования биомолекулярных неоднородностей и для измерения структурной динамики в широком диапазоне временных масштабов (Lerner и другие., 2018а; Мазаль и Аран, 2019; Санабрия и др., 2020; Шулер и Хофманн, 2013; Weiss, 1999).
Одномолекулярный FRET (smFRET) имеет много преимуществ в качестве метода структурной биологии, в том числе:
чувствительность к макромолекулярным расстояниям (2,5–10 нм),
способность разрешать структурные и динамические неоднородности,
высококачественные измерения с низким потреблением образцов интересующих молекул (низкие концентрации и низкие объемы), поскольку образец анализируется по одной молекуле за раз,
определение структурных переходов в состоянии равновесия, следовательно, без необходимости синхронизации,
возможность обнаруживать (очень) редкие события.Действительно, в биологии наиболее интересными для изучения молекулы часто являются редкие, функционально активные молекулы среди моря неактивных молекул,
высокая чувствительность и специфичность для меченых молекул. Поскольку только меченая молекула вносит уникальный вклад в детектируемый сигнал, эти индикаторы также могут применяться в качестве FRET-репортеров в тесноте (Dupuis et al., 2014; Soranno et al., 2014; Zosel et al., 2020b) (отсюда smFRET может использоваться для проверки результатов, определенных изолированно, или обнаружения модуляции конформационных предпочтений и / или структурной динамики посредством так называемых пяти взаимодействий [Guin and Gruebele, 2019]), и
высокая специфичность в отношении остатков / доменов за счет специфического мечения.Биомолекулы могут быть специально помечены уникальной парой красителей, что позволяет проводить измерения smFRET для всех размеров молекул, включая большие сложные сборки (см. Рисунок 1 [Kilic et al., 2018]), активные биологические машины (например, рибосомы) ( Dunkle et al., 2011) и даже на целых нативных вирионах (Lu et al., 2019; Munro et al., 2014).
Рабочий процесс моделирования динамических структур по измерениям FRET.
( A ) Интеграционное моделирование требует структурной и динамической информации. Предварительная информация из традиционных подходов (рентген, ЯМР, криоЭМ) вместе с вычислительными инструментами определяет пространство возможных решений для структурного моделирования с помощью FRET. Комбинация структурной (расстояния между красителями) и динамической информации (кинетическая связь и обменные курсы) позволяет идентифицировать непротиворечивую модель. ( B ) Изучение структуры и динамики хроматиновых волокон.Комбинированное TIRF и конфокальное FRET исследование структуры и динамики хроматиновых волокон с использованием трех позиций маркировки FRET (DA1-3) для двух пар красителей с различными расстояниями Ферстера. Расстояния Фёрстера (определены в разделе Расстояния между красителями, уравнение 6). Предварительная структурная информация, полученная с помощью криоэлектронной микроскопии (вверху слева) (Song et al., 2014) и рентгеновской кристаллографии (вверху, справа PDB ID: 1ZBB Schalch et al., 2005), объединена со структурной и динамической информацией. полученные в результате экспериментов FRET на иммобилизованных молекулах, измеренных с помощью микроскопии полного внутреннего отражения (TIRF), и на свободно диффундирующих молекулах с помощью конфокальной микроскопии (Kilic et al., 2018). На основе объединенной информации получается согласованная модель конформаций хроматиновых волокон со смещенными регистрами, которые связаны медленными (> 100 мс) и быстрыми процессами декомпакции (150 мкс), которые не протекают напрямую, а скорее через открытое волокно. конформация. Рисунок 1B был воспроизведен с рисунков 1, 3 и 6 в Kilic et al., 2018, Nature Communications с разрешения, опубликованном под Международной общественной лицензией Creative Commons Attribution 4.0 (CC BY 4.0; https: // creativecommons.org / licenses / by / 4.0 /).
© 2018, Kilic et al. Панель B была воспроизведена с рисунков 1, 3 и 6 в Kilic et al., 2018 с разрешения, опубликованного в соответствии с Международной общественной лицензией Creative Commons Attribution 4.0.
Несколько методов были использованы для определения структурных ансамблей, таких как ЯМР, одночастичная криоЭМ или XL-MS, а недавно также smFRET в интегративном / гибридном (I / H) подходе с компьютерным моделированием для преодоления разреженности экспериментальных данных. относительно атомистического описания (Берман и др., 2019; де Соуза и Пикотти, 2020; Димура и др., 2020; Gauto et al., 2019; Кукос и Бонвин, 2020; На и Пэк, 2020; Тан и Гонг, 2020; Webb et al., 2018). Структурные модели I / H, полученные из экспериментов smFRET с использованием расстояний между красителями в качестве ограничений, были описаны для гибких свернутых белков (Brunger et al., 2011; Hellenkamp et al., 2017; Margittai et al., 2003; McCann et al., 2012). ), конформационные ансамбли неупорядоченных / неструктурированных и развернутых белков (Borgia et al., 2018; Holmstrom et al., 2018; Schuler et al., 2020), нуклеиновые кислоты и комплексы белок-нуклеиновая кислота (Craggs et al., 2019; Craggs, Kapanidis, 2012; Kalinin et al., 2012; Lerner et al., 2018b; Muschielok et al., 2008). ; Возняк и др., 2008).
Еще одним уникальным аспектом исследований smFRET является то, что структурная, кинетическая и спектроскопическая информация о больших и сложных системах может быть записана одновременно в одном измерении. Это облегчает объединение динамической и структурной информации в интегративный подход к (рис. 1A) (Hellenkamp et al., 2017; Килич и др., 2018; Ли и др., 2020b; Санабрия и др., 2020; Вассерман и др., 2016; Янез Ороско и др., 2018):
.определяют количество возможных структур, согласующихся с данными,
потенциально снижает неоднозначность между различными структурными моделями, совместимыми с экспериментальными данными, а
раскрывают структурно разрешенные динамические пути обмена.
В качестве примера на рисунке 1B показан результат мультимодального исследования smFRET конформационного ландшафта 12-мерного массива хроматина (~ 2.5 MDa) (Kilic et al., 2018) с динамикой, происходящей во временных масштабах от наносекунд до часов. SmFRET эксперименты могут обнаруживать гибкие конформации хроматина (рис. 1B, средняя панель), показывая их динамическую структурную неоднородность (рис. 1B, нижняя панель), в отличие от хорошо упорядоченных статических структур хроматиновых волокон (рис. 1B, верхняя панель). Эти гибкие, частично открытые и открытые конформации, которые довольно многочисленны в растворе (популяция> 70%; рис. 1B, нижняя панель), не были разрешены ранее, хотя они необходимы для правильной организации и функции гена.Они представляют собой центральный узел взаимопревращений для отдельных регистров стэка хроматина и их трудно обнаружить с помощью других структурных методов. Такой подход к визуализации биомолекул в действии в условиях окружающей среды подчеркивает важность их динамической природы путем разрешения переходов между различными конформационными состояниями, что во многих случаях способствует их функции (Aviram et al., 2018; Henzler-Wildman et al., 2007; Iljina et al., 2020; Lerner et al., 2018b; Sanabria et al., 2020; Tassis et al., 2020).
ИзмеренияSmFRET обычно выполняются с использованием двух подходов: с использованием иммобилизованных на поверхности молекул с использованием флуоресцентной микроскопии полного внутреннего отражения (TIRFM) и обнаружения на основе камеры или со свободно диффундирующими молекулами в растворе с использованием конфокальной микроскопии и точечных детекторов. Экспериментальные системы доступны в продаже, но, как правило, изготавливаются самостоятельно. Образцы подготавливаются, а данные собираются с использованием протоколов для конкретных лабораторий, где данные хранятся в различных форматах файлов и анализируются с использованием набора все более мощного программного обеспечения.Для полевых исследований в целом и для структурных исследований в частности важно продемонстрировать, что smFRET как метод воспроизводим и надежен независимо от того, где и как измеряется образец. С этой целью под руководством Торстена Хугеля двадцать лабораторий объединились для измерения smFRET на нескольких конструкциях дцДНК (Hellenkamp et al., 2018a). Изучая шесть различных образцов с разными красителями и различными расстояниями между красителями, средняя эффективность FRET, полученная участвующими лабораториями, показала удивительно высокую степень согласия (ΔE между 0.02 и 0,05 в зависимости от деталей образца). Количественная оценка и воспроизводимость измерений smFRET на основе интенсивности и обсуждение анализа данных стали важной вехой. Эти стандарты дцДНК FRET теперь доступны для ежедневной калибровки и особенно полезны для новых групп, присоединяющихся к сообществу.
Вдохновленный идеями, полученными в ходе вышеупомянутой попытки FRET (Hellenkamp et al., 2018a), были начаты новые многолабораторные слепые исследования.Следующее сравнительное исследование FRET, проведенное Thorben Cordes, исследует надежность и надежность экспериментов smFRET на белках, претерпевающих индуцированные лигандом конформационные изменения (Gebhardt et al., В стадии подготовки). В этом исследовании используются два различных модельных белка для оценки воспроизводимости и точности smFRET на основе белков для измерения расстояния между красителями. Белковые системы ставят новые задачи, включая статистическую маркировку красителей, специфические для сайта свойства красителей, стабильность белков, транспортировку, хранение и конформационную динамику.Следовательно, в исследовании также оценивается способность smFRET обнаруживать и количественно оценивать динамику в различных временных масштабах от микросекунд до секунд. Еще одна задача FRET, инициированная Соней Шмид, — это программа kinSoftChallenge (http://www.kinsoftchallenge.com, Götz et al., В стадии подготовки), которая оценивает существующие инструменты для извлечения кинетической информации из временных траекторий одиночных молекул. Эта задача направлена на: (1) продемонстрировать способность кинетического анализа на основе smFRET точно выводить динамическую информацию и (2) предоставить сообществу средства оценки различных доступных программных инструментов.
Одним из важных результатов различных исследований FRET в нескольких лабораториях было то, что, хотя согласие было хорошим, его можно было улучшить еще больше. В частности, анализ данных и, в частности, исправления могут повлиять на определенную эффективность FRET и результирующие расстояния. Следовательно, открытое обсуждение того, какие подходы работают наиболее надежно, при каких условиях необходимо. Доступ к первичным данным и возможность их обработки с помощью различных подходов к анализу были и останутся наиболее прозрачным способом продвижения вперед в этой области.В настоящее время это сложно, учитывая множество вариантов используемых методов, их документации, форматов файлов и экспериментальных процедур, применяемых в разных лабораториях, для установления оптимальных условий, рабочего процесса и передовых практик даже для существующих, хорошо протестированных методов, поскольку сравнение этих методов затруднительно требует много времени, а необходимая информация во многих случаях недоступна. С расширением открытых научных практик и представлением опубликованных данных в репозитории необходим консенсус относительно того, какие данные и метаданные следует хранить и в каких возможных форматах, чтобы их могло легко использовать сообщество.
В связи с этими соображениями и множеством возможностей для роста сообщества smFRET, несколько лабораторий, обладающих опытом в FRET, без претензий на исчерпывающий или исключительный характер, собрались, чтобы поддержать эти усилия и предложить шаги по организации сообщества вокруг последовательной и открытой науки. практики. Это действие переводится в общие методологические рекомендации или предложения, которые мы представляем после типичного рабочего процесса эксперимента smFRET, включая подготовку и определение характеристик образцов, описание установки, сбор и сохранение данных, а также анализ данных.Эти рекомендации о том, как «практиковать» smFRET, являются не попыткой систематизировать сообщество, а скорее первоначальным предложением, которое направлено на поощрение открытого диалога о существующих практиках в нашей области и приводит к более высокой воспроизводимости результатов экспериментов smFRET.